Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory: Springer Theses
Autor Paul-Hermann Baldufen Limba Engleză Hardback – 27 apr 2024
Din seria Springer Theses
- 5% Preț: 1120.94 lei
- Preț: 378.78 lei
- 15% Preț: 628.41 lei
- 18% Preț: 1185.38 lei
- Preț: 387.92 lei
- 18% Preț: 969.23 lei
- 18% Preț: 914.05 lei
- Preț: 544.51 lei
- 15% Preț: 624.74 lei
- 15% Preț: 624.28 lei
- 15% Preț: 620.96 lei
- 20% Preț: 558.80 lei
- 18% Preț: 916.35 lei
- 18% Preț: 1084.20 lei
- 15% Preț: 621.74 lei
- 15% Preț: 621.74 lei
- Preț: 276.68 lei
- 15% Preț: 618.22 lei
- 18% Preț: 865.60 lei
- 15% Preț: 622.52 lei
- Preț: 378.62 lei
- 20% Preț: 563.88 lei
- Preț: 382.16 lei
- 15% Preț: 619.66 lei
- 15% Preț: 623.48 lei
- 18% Preț: 1080.35 lei
- 20% Preț: 551.34 lei
- 18% Preț: 1071.93 lei
- 18% Preț: 1078.05 lei
- 18% Preț: 1190.72 lei
- 18% Preț: 917.87 lei
- 18% Preț: 917.09 lei
- 15% Preț: 621.74 lei
- 18% Preț: 1193.80 lei
- 15% Preț: 621.74 lei
- 18% Preț: 1182.30 lei
- 15% Preț: 618.57 lei
- 18% Preț: 972.14 lei
- 15% Preț: 617.77 lei
- 15% Preț: 622.52 lei
- Preț: 376.18 lei
- 18% Preț: 970.76 lei
- Preț: 374.28 lei
- Preț: 374.28 lei
- 18% Preț: 1078.05 lei
- 18% Preț: 1078.83 lei
- Preț: 375.97 lei
- 15% Preț: 618.89 lei
- 20% Preț: 554.19 lei
- 20% Preț: 555.56 lei
Preț: 1085.89 lei
Preț vechi: 1324.26 lei
-18% Nou
Puncte Express: 1629
Preț estimativ în valută:
207.84€ • 216.62$ • 173.02£
207.84€ • 216.62$ • 173.02£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031544453
ISBN-10: 3031544455
Ilustrații: XVI, 363 p. 32 illus., 9 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.71 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3031544455
Ilustrații: XVI, 363 p. 32 illus., 9 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.71 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Introduction to perturbative quantum field theory.- Hopf algebra theory of renormalization.- Renormalized Green functions in kinematic renormalization.- Renormalization group and Dyson-Schwinger equations in non-kinematic renormalization.- Field diffeomorphisms and symmetries.- Conclusion and outlook
Notă biografică
Paul-Hermann Balduf studied at Friedrich Schiller University Jena (Germany) and University of Lund (Sweden), receiving a Bachelor's degree from the former. Having moved to Berlin (Germany), he received his Master's degree from Humboldt-Universität zu Berlin in 2018. He did his doctorate in the group "Structure of Local Quantum Field Theories" at Humboldt-Universität under the supervision of Prof. Dr. Dirk Kreimer. Currently, he is a postdoctoral fellow at University of Waterloo (Canada). His research interest is in renormalization of quantum field theories. In particular, he is interested in the behavior of perturbative series at high order, in combinatorial properties of Feynman graphs, in numerical integration and in the physical background and interpretation of the Hopf algebra framework of renormalization.
Textul de pe ultima copertă
This book offers a systematic introduction to the Hopf algebra theory of renormalization in quantum field theory. Special emphasis is put on physical motivation for mathematical constructions, the role of Dyson–Schwinger equations (DSEs), renormalization conditions, and the renormalization group. The bulk of the book deals with the similarities and differences between two popular renormalization conditions, kinematic renormalization (MOM) and Minimal Subtraction (MS). MOM is a physical global boundary condition for Green functions. DSEs can then be solved in terms of power series which only involve finite renormalized quantities. Conversely, MS is defined order-by-order based on divergences of the unrenormalized Green function. We show that MS is equivalent to MOM with coupling-dependent renormalization point. We determine the large-order growth of series coefficients in different renormalization schemes and derive a novel analytic formula for the all-order solution of linear DSEs in MS. Finally, we derive the changes in off-shell Green functions and counterterms under nonlinear redefinition of field variables for self-interacting scalar fields. The book is aimed at mathematically oriented physicists and physically interested mathematicians who seek a systematic overview of the Hopf algebra theory of renormalization and DSEs.
Caracteristici
Nominated as an outstanding Ph.D. Thesis by the Humboldt University, Berlin Offers a systematic introduction to the Hopf algebra of renormalization in quantum field theory Focuses on physical motivation, the role of Dyson–Schwinger equations, and the renormalization group