Cantitate/Preț
Produs

Earthquake Geotechnical Engineering Design: Geotechnical, Geological and Earthquake Engineering, cartea 28

Editat de Michele Maugeri, Claudio Soccodato
en Limba Engleză Hardback – 27 mar 2014
Pseudo-static analysis is still the most-used method to assess the stability of geotechnical systems that are exposed to earthquake forces. However, this method does not provide any information about the deformations and permanent displacements induced by seismic activity. Moreover, it is questionable to use this approach when geotechnical systems are affected by frequent and rare seismic events. Incidentally, the peak ground acceleration has increased from 0.2-0.3 g in the seventies to the current value of 0.6-0.8 g. Therefore, a shift from the pseudo-static approach to performance-based analysis is needed.
Over the past five years considerable progress has been made in Earthquake Geotechnical Engineering Design (EGED). The most recent advances are presented in this book in 6 parts.
The evaluation of the site amplification is covered in Part I of the book. In Part II the evaluation of the soil foundation stability against natural slope failure and liquefaction is treated. In the following 3 Parts of the book the EGED for different geotechnical systems is presented as follows: the design of levees and dams including natural slopes in Part III; the design of foundations and soil structure interaction analysis in Part IV; underground structures in Part V. Finally in Part VI, new topics like the design of reinforced earth retaining walls and landfills are covered.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 56973 lei  39-44 zile
  Springer International Publishing – 3 sep 2016 56973 lei  39-44 zile
Hardback (1) 65773 lei  6-8 săpt.
  Springer International Publishing – 27 mar 2014 65773 lei  6-8 săpt.

Din seria Geotechnical, Geological and Earthquake Engineering

Preț: 65773 lei

Preț vechi: 77380 lei
-15% Nou

Puncte Express: 987

Preț estimativ în valută:
12589 13093$ 10550£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319031811
ISBN-10: 3319031813
Pagini: 388
Ilustrații: XII, 388 p. 306 illus., 212 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.9 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Geotechnical, Geological and Earthquake Engineering

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Spatially constrained inversion of surface wave data to build shear wave velocity models.- Site Classification and spectral amplification for seismic code provisions.- Sand Liquefaction observed during Recent earthquake and Basic Laboratory Studies on Aging effect.-
Liquefaction In Tokyo Bay And Kanto Regions In The 2011 Great East Japan Earthquake.- Allowable settlement and inclination of houses defined after the 2011 Tohoku - Pacific Ocean Earthquake in Japan.- Seismic Performance of River Levees; Experience and Prediction.- Earthquake Performance Design of Dams using Destructive Potential Factors.- Seismic response of shallow footings: a promising application for the macro-element approach.- Large-Scale Modeling of Ground and Soil-Structure Earthquake Response.- Seismic displacement based design of structures: relevance of soil structure interaction.- Performance and seismic design of underground structures.- Reinforced Soil Walls during the Recent Great Earthquakes in Japan and Geo-Risk based Design.- Performance Based Seismic Design of Geosynthetic Barriers for Waste Containment.

Textul de pe ultima copertă

Pseudo-static analysis is still the most-used method to assess the stability of geotechnical systems that are exposed to earthquake forces. However, this method does not provide any information about the deformations and permanent displacements induced by seismic activity. Moreover, it is questionable to use this approach when geotechnical systems are affected by frequent and rare seismic events. Incidentally, the peak ground acceleration has increased from 0.2-0.3 g in the seventies to the current value of 0.6-0.8 g. Therefore, a shift from the pseudo-static approach to performance-based analysis is needed.
Over the past five years considerable progress has been made in Earthquake Geotechnical Engineering Design (EGED). The most recent advances are presented in this book in 6 parts.
The evaluation of the site amplification is covered in Part I of the book. In Part II the evaluation of the soil foundation stability against natural slope failure and liquefaction is treated. In the following 3 Parts of the book the EGED for different geotechnical systems is presented as follows: the design of levees and dams including natural slopes in Part III; the design of foundations and soil structure interaction analysis in Part IV; underground structures in Part V. Finally in Part VI, new topics like the design of reinforced earth retaining walls and landfills are covered.

Caracteristici

Performance Design instead of prescriptive design Design of infrastructures to withstand high values of acceleration Performance of shallow foundations against liquefaction Seismic performance of river levees and dams and waste contaminant landfill Dynamic soil-structure interaction and underground structures