Cantitate/Preț
Produs

Effective Topologies for Computation in Cortex-like Networks

Autor Robert Rohrkemper
en Limba Engleză Paperback – 7 feb 2012
A principle goal of Neuroscience is to understand how brain-like computations are enabled by the structure of the cortex. Complex developmental processes required to build and maintain the cortex point to the importance of the brain's structural properties. During development, significant resources, time, and energy are required-suggesting a need to optimize to build the best structure possible. In this work, tools have been developed based on state transition analysis for understanding when computational performance is enhanced by changes in the topology. A dynamic state is defined as the set of neurons that are active at any moment. This state changes as neurons are affected by external and recurrent inputs. In these reservoirs of linear-threshold neurons, performance can be optimized by evaluating the learning capacity of a network when parameters are changed. It is demonstrated that both having more unique states and more transitions between these states will improve the ability of the network to learn and match a target signal with a higher precision. These results allow for optimizing the computational abilities of a small group of neurons by changing the network topology.
Citește tot Restrânge

Preț: 44169 lei

Preț vechi: 55212 lei
-20% Nou

Puncte Express: 663

Preț estimativ în valută:
8453 8806$ 7028£

Carte tipărită la comandă

Livrare economică 10-24 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783847327462
ISBN-10: 3847327461
Pagini: 248
Dimensiuni: 152 x 229 x 14 mm
Greutate: 0.37 kg
Editura: LAP LAMBERT ACADEMIC PUBLISHING AG & CO KG
Colecția LAP Lambert Academic Publishing

Notă biografică

Dr. Rohrkemper has applied machine learning to practical problems in data forecasting, object recognition, and business intelligence. He earned a Ph.D. from the ETH Zurich and has worked with international companies and industrial partners. His education was interdisciplinary, including physical sciences, life sciences, business, and liberal arts.