Cantitate/Preț
Produs

Electrochemical Sensors in Immunological Analysis

Editat de That T. Ngo
en Limba Engleză Paperback – 11 iun 2013
The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra­ sensitive analysis of trace substances in complex biological systems. In recognition of the enormous contributions of RIA to basic research in biology and to routine clinical tests in laboratory medicine, R.S. Yalow, the co-developer of RIA, was awarded, in 1977, the Nobel Prize for Medicine and Physiology. The basic principle of RIA is elegantly simple. It is based on a specific, competitive binding reaction between the analyte and the radio-labeled analog of the analyte for the specific antibody raised to the analyte. The combination of high specificity and affinity of an antibody molecule makes it a very versatile analytical reagent capable of reacting specifically with analytes at a very low concentration in a complex solution such as serum. The sensitivity of RIA is provided by using a radioactive tracer.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 141853 lei  43-57 zile
  Springer Us – 11 iun 2013 141853 lei  43-57 zile
Hardback (1) 141709 lei  43-57 zile
  Springer Us – 30 aug 1987 141709 lei  43-57 zile

Preț: 141853 lei

Preț vechi: 149318 lei
-5% Nou

Puncte Express: 2128

Preț estimativ în valută:
27167 27990$ 22758£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781489919762
ISBN-10: 1489919767
Pagini: 376
Ilustrații: XII, 348 p.
Dimensiuni: 210 x 297 x 20 mm
Greutate: 0.9 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra­ sensitive analysis of trace substances in complex biological systems. In recognition of the enormous contributions of RIA to basic research in biology and to routine clinical tests in laboratory medicine, R.S. Yalow, the co-developer of RIA, was awarded, in 1977, the Nobel Prize for Medicine and Physiology. The basic principle of RIA is elegantly simple. It is based on a specific, competitive binding reaction between the analyte and the radio-labeled analog of the analyte for the specific antibody raised to the analyte. The combination of high specificity and affinity of an antibody molecule makes it a very versatile analytical reagent capable of reacting specifically with analytes at a very low concentration in a complex solution such as serum. The sensitivity of RIA is provided by using a radioactive tracer.

Cuprins

On the Direct Immunochemical Potentiometric Signal.- Selective Antibody Responsive Membrane Electrodes.- Electroimmunoassay of PGE2: An Antibody-Sensitive Electrode Based Competive Protein-Binding Assay.- Immuno-Potentiometric Sensors with Antigen Coated Membrane.- The Opsonized Electrode.- Homogeneous Voltammetric Immunoassay of Haptens.- Immunoassay by Differential Pulse Polarography and Anodic Stripping Voltammetry.- Separation-Free (Homogeneous) Amperometric Immunoassay Using an Apoenzyme as the Label.- Digoxin Homogeneous Enzyme Immunoassay with Amperometric Detection.- Antibody to an Enzyme as the Modulator in Separation-Free Enzyme Immunoassays with Electrochemical Sensor.- Immunochemical Determination of Creatine Kinase Isoenzyme-MB.- Immunosensor Based on Labeled Liposome Entrapped-Enzymes.- Measurement of Complement Fixation with Ion Selective Membrane Electrodes.- Antibody-Antigen Precipitin Reaction Monitoring with an Ion Selective Electrode.- Enzyme-Linked Immunoassay with a Fluoride Ion Selective Electrode.- Heterogeneous Potentiometric Enzyme Immunoassay for Antigens and Haptens with Iodide Selective Electrode.- Enzyme Immunoassay using the Ammonia Gas-Sensing Electrode.- Homogeneous and Heterogeneous Enzyme Immunoassays Monitored with Carbon Dioxide Sensing Membrane Electrode.- Enzyme-Linked Immunosorbent Assays Using Oxygen-Sensing Electrode.- Bioaffinity Electrochemical Sensor with Preformed Metastable Ligand-Receptor Complex.- Electric Pulse Accelerated Immunoassay.- Heterogeneous Enzyme Immunoassay with Amperometric Detection.- Enzyme Immunoassay in Flow Systems with Electrochemical and Other Detectors.- Use of Immunochemical Separation and Electrochemical Detection in Flow Injection Analysis of Lactic Dehydrogenase.- Rapid Subpicomole Enzyme Immunoassay by Flow Injection with Amperometric Detection.- Contributors.