Ensembles in Machine Learning Applications: Studies in Computational Intelligence, cartea 373
Editat de Oleg Okun, Giorgio Valentini, Matteo Reen Limba Engleză Hardback – 7 sep 2011
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.
This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 644.48 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 23 aug 2016 | 644.48 lei 6-8 săpt. | |
Hardback (1) | 648.44 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 7 sep 2011 | 648.44 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1158.26 lei
- 20% Preț: 986.66 lei
- 20% Preț: 1452.76 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 565.38 lei
- 20% Preț: 649.28 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1578.96 lei
- 20% Preț: 643.50 lei
- 20% Preț: 657.49 lei
- 20% Preț: 993.28 lei
- 20% Preț: 990.80 lei
- 20% Preț: 989.96 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1444.52 lei
- 20% Preț: 1041.96 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1046.06 lei
- 18% Preț: 2500.50 lei
- 20% Preț: 989.13 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1042.79 lei
- 20% Preț: 1460.19 lei
- 18% Preț: 1403.52 lei
- 18% Preț: 1124.92 lei
- 20% Preț: 1039.47 lei
- 20% Preț: 1008.11 lei
- 20% Preț: 1045.25 lei
- 20% Preț: 1275.42 lei
- 20% Preț: 1040.32 lei
- 20% Preț: 988.32 lei
- 20% Preț: 1169.79 lei
- 20% Preț: 1162.37 lei
- 20% Preț: 1059.26 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1166.52 lei
- 20% Preț: 1459.38 lei
- 18% Preț: 1005.74 lei
- 20% Preț: 997.38 lei
- 20% Preț: 1055.94 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 994.08 lei
- 20% Preț: 1048.72 lei
- 20% Preț: 1066.02 lei
- 20% Preț: 943.78 lei
- 20% Preț: 1173.10 lei
- 20% Preț: 1457.72 lei
Preț: 648.44 lei
Preț vechi: 810.55 lei
-20% Nou
Puncte Express: 973
Preț estimativ în valută:
124.14€ • 129.52$ • 104.06£
124.14€ • 129.52$ • 104.06£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642229091
ISBN-10: 3642229093
Pagini: 272
Ilustrații: XX, 252 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642229093
Pagini: 272
Ilustrații: XX, 252 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
From the content: Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers.- On the Design of Low Redundancy Error-Correcting Output Codes.- Minimally-Sized Balanced Decomposition Schemes for Multi-ClassClassification.- Bias-Variance Analysis of ECOC and Bagging Using Neural Nets.- Fast-ensembles of Minimum Redundancy Feature Selection.
Textul de pe ultima copertă
This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.
This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.
This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.
Caracteristici
Recent research on Ensembles in Machine Learning Applications Edited outcome of the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications held in Barcelona on September 20, 2010 Written by leading experts in the field