Cantitate/Preț
Produs

Equilibrium Statistical Mechanics of Lattice Models: Theoretical and Mathematical Physics

Autor David A. Lavis
en Limba Engleză Hardback – 12 feb 2015
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models.
Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution.
Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations.
In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models.
In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef—Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideasof scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization.
Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 88812 lei  43-57 zile
  SPRINGER NETHERLANDS – 9 oct 2016 88812 lei  43-57 zile
Hardback (1) 89441 lei  43-57 zile
  SPRINGER NETHERLANDS – 12 feb 2015 89441 lei  43-57 zile

Din seria Theoretical and Mathematical Physics

Preț: 89441 lei

Preț vechi: 109075 lei
-18% Nou

Puncte Express: 1342

Preț estimativ în valută:
17119 17842$ 14251£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789401794299
ISBN-10: 9401794294
Pagini: 793
Ilustrații: XVII, 793 p. 101 illus.
Dimensiuni: 155 x 235 x 48 mm
Greutate: 1.3 kg
Ediția:2015
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Theoretical and Mathematical Physics

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

Part I Thermodynamics, Statistical Mechanical Models and Phase Transitions.- Introduction.- Thermodynamics.- Statistical Mechanics.- A Survey of Models.- Phase Transitions and Scaling Theory.- Part II Classical Approximation Methods.- Phenomenological Theory and Landau Expansions.- Classical Methods.- The Van der Waals Equation.- Landau Expansions with One Order Parameter.- Landau Expansions with Two Order Parameter.- Landau Theory for a Tricritical Point.- Landau_Ginzburg Theory.- Mean-Field Theory.- Cluster-Variation Methods.- Part III Exact Results.- Introduction.- Algebraic Methods.- Transformation Methods.- Edge-Decorated Ising Models.- 11 Transfer Matrices: Incipient Phase Transitions.- Transfer Matrices: Exactly Solved Models.- Dimer Models.- Part IV Series and Renormalization Group Methods.- Introduction.- Series Expansions.- Real-Space Renormalization Group Theory.- A Appendices.- References and Author Index.

Recenzii




Textul de pe ultima copertă

Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In PartIII the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef—Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Padé, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

Caracteristici

From one author of the successful two-volume work on statistical mechanics by Lavis and Bell (Springer, 1999) Includes accounts of mean-field, exact, renormalization group and series methods for critical phenomena An accurate and scholarly book useful for consultation Includes supplementary material: sn.pub/extras