Ergodic Properties of Algebraic Fields: ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE, cartea 45
Autor Yurij V. Linnik Traducere de M.S. Keaneen Limba Engleză Paperback – 10 apr 2012
Din seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
- Preț: 425.41 lei
- Preț: 394.02 lei
- Preț: 466.23 lei
- Preț: 362.83 lei
- Preț: 473.20 lei
- 15% Preț: 677.41 lei
- Preț: 332.76 lei
- Preț: 368.74 lei
- Preț: 368.57 lei
- 15% Preț: 612.38 lei
- Preț: 471.42 lei
- Preț: 373.19 lei
- 15% Preț: 474.94 lei
- Preț: 378.57 lei
- Preț: 363.75 lei
- Preț: 369.88 lei
- Preț: 397.53 lei
- Preț: 365.96 lei
- Preț: 397.16 lei
- Preț: 371.14 lei
- Preț: 399.78 lei
- Preț: 362.46 lei
- Preț: 365.22 lei
- Preț: 465.09 lei
- Preț: 398.83 lei
- 15% Preț: 557.78 lei
- 15% Preț: 612.56 lei
- Preț: 403.28 lei
- 18% Preț: 1066.64 lei
- 15% Preț: 556.53 lei
- Preț: 367.10 lei
- Preț: 368.74 lei
- Preț: 361.36 lei
- Preț: 165.21 lei
- Preț: 144.31 lei
- Preț: 366.69 lei
- Preț: 397.73 lei
- Preț: 394.76 lei
- Preț: 366.90 lei
- Preț: 462.72 lei
- Preț: 361.52 lei
- Preț: 368.00 lei
- Preț: 369.11 lei
- Preț: 174.84 lei
- Preț: 393.40 lei
- Preț: 346.06 lei
- Preț: 362.28 lei
Preț: 368.74 lei
Nou
Puncte Express: 553
Preț estimativ în valută:
70.57€ • 74.45$ • 58.81£
70.57€ • 74.45$ • 58.81£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642866333
ISBN-10: 3642866336
Pagini: 208
Ilustrații: X, 194 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642866336
Pagini: 208
Ilustrații: X, 194 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
§ 1 Ergodic Theory.- § 2 Applications of Ergodic Concepts to the Theory of Diophantine Equations.- I. A Summary of Elementary Ergodic Theory and Limit Theorems of Probability Theory.- § 1 Basic Theorems of Ergodic Theory.- § 2 Applications to Metric Number Theory.- § 3 Limit Theorems of Probability Theory.- II. A Summary of the Arithmetic of Quaternions and Matrices.- § 1 Arithmetic of Quaternions.- § 2 Arithmetic of 2 × 2 Matrices.- § 3 Arithmetic of n × n Matrices.- III. Rotations of the Sphere, Binary Quadratic Forms, and Quaternions.- § 1 Supplementary Arithmetic Information.- § 2 Asymptotic Properties of Rotations of a Large Sphere.- IV. Asymptotic Geometrical and Ergodic Properties of the Set of Integral Points on the Sphere.- § 1 Formulation of the Problem.- § 2 Ergodic Properties.- § 3 Primitive Points in the Fundamental Triangle.- § 4 Reduction of the Problem to the Calculation of Probabilities of Large Deviations.- § 5 Calculation of Probabilities of Large Deviations. An Application of Theorem III.2.1.- § 6 Completion of the Proof to the Ergodic Theorem IV.2.1.- § 7 Orthogonal Matrices. A Mixing Theorem. The Asymptotic Distribution of Primitive Points on the Sphere.- § 8 Supplementary Remarks.- V. Flows of Primitive Points on a Hyperboloid of Two Sheets. Asymptoticity of Reduced Binary Forms in Connection with Lobachevskian Geometry.- § 1 Formulation of the Problem.- § 2 Formulation of the Basic Theorems.- § 3 Formulation of the Basic Lemma.- § 4 Continuation of the Proof of the Basic Lemma.- § 5 Study of Rotations.- § 6 Behavior of Senior Forms.- § 7 An Estimate for the Number of Primitive Representations.- § 8 A Lemma on Divisibility of Matrices in Connection with Probabilities of Large Deviations.- § 9 Reduced Forms with SmallFirst Coefficients.- §10 Transition of the Proof of Theorem V.2.1.- §11 A Lemma on Matrices.- § 12 A Lemma due to I. M. Vinogradov and Kloosterman Sums.- §13 Consequences of Lemma V. 11.1.- §14 Asymptotic Geometry of Hyberbolic Rotations.- §15 Evaluation of Probabilities.- §16 Proof of Theorem V.2.1.- §17 Proofs of Theorems V.2.2. and V.2.1.- § 18 On Ergodic Theorems for the Flow of Primitive Points of the Hyperboloid of Two Sheets.- §19 Ergodic Theorems for a Modular Invariant.- §20 Supplementary Remarks.- VI. Flows on Primitive Points on a Hyperboloid of One Sheet.- § 1 Formulation of the Problem.- § 2 Formulation of the Basic Theorem. A Lemma on Integral Points.- § 3 Asymptoticity of Hyperbolic Rotations.- § 4 Further Investigation of the Asymptoticity of Hyperbolic Rotations.- § 5 An Ergodic Theorem and a Mixing Theorem.- VII. Algebraic Fields of a More General Type.- § 1 General Remarks.- § 2 On the Representations of Algebraic Numbers by Integral Matrices.- § 3 Rotations.- VIII. Asymptotic Distribution of Integral 3 × 3 Matrices.- § 1 Formulation of the Problem.- § 2 Some Estimates.- § 3 Completion of the Proof.- IX. Further Generalizations. A Connection with the Generalized Riemann Hypothesis.- § 1 Further Generalizations.- § 2 A Connection with the Generalized Riemann Hypothesis and its Weaker Forms.- § 3 Elementary Ergodic Considerations.- X. An Arithmetic Simulation of Brownian Motion.- § 1 General Remarks. Formulation of the Problem.- § 2 Basic Theorems.- XI. Supplementary Remarks. Problems.- Author Index.