Cantitate/Preț
Produs

Geometric Invariant Theory: ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE, cartea 34

Autor David Mumford, John Fogarty, Frances Kirwan
en Limba Engleză Paperback – 29 oct 2012
“Geometric Invariant Theory” by Mumford/Fogarty (the first edition was published in 1965, a second, enlarged edition appeared in 1982) is the standard reference on applications of invariant theory to the construction of moduli spaces. This third, revised edition has been long awaited for by the mathematical community. It is now appearing in a completely updated and enlarged version with an additional chapter on the moment map by Prof. Frances Kirwan (Oxford) and a fully updated bibliography of work in this area. The book deals firstly with actions of algebraic groups on algebraic varieties, separating orbits by invariants and construction quotient spaces; and secondly with applications of this theory to the construction of moduli spaces. It is a systematic exposition of the geometric aspects of the classical theory of polynomial invariants.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 108619 lei  43-57 zile
  Springer Berlin, Heidelberg – 29 oct 2012 108619 lei  43-57 zile
Hardback (1) 109205 lei  43-57 zile
  Springer Berlin, Heidelberg – 29 mar 1994 109205 lei  43-57 zile

Din seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE

Preț: 108619 lei

Preț vechi: 132463 lei
-18% Nou

Puncte Express: 1629

Preț estimativ în valută:
20787 21593$ 17267£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642634000
ISBN-10: 3642634001
Pagini: 312
Ilustrații: XIV, 294 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 3rd ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

0. Preliminaries.- 1. Definitions.- 2. First properties.- 3. Good and bad actions.- 4. Further properties.- 5. Resumé of some results of Grothendieck.- 1. Fundamental theorems for the actions of reductive groups.- 1. Definitions.- 2. The affine case.- 3. Linearization of an invertible sheaf.- 4. The general case.- 5. Functional properties.- 2. Analysis of stability.- 1. A numeral criterion.- 2. The flag complex.- 3. Applications.- 3. An elementary example.- 1. Pre-stability.- 2. Stability.- 4. Further examples.- 1. Binary quantics.- 2. Hypersurfaces.- 3. Counter-examples.- 4. Sequences of linear subspaces.- 5. The projective adjoint action.- 6. Space curves.- 5. The problem of moduli — 1st construction.- 1. General discussion.- 2. Moduli as an orbit space.- 3. First chern classes.- 4. Utilization of 4.6.- 6. Abelian schemes.- 1. Duals.- 2. Polarizations.- 3. Deformations.- 7. The method of covariants — 2nd construction.- 1. The technique.- 2. Moduli as an orbit space.- 3. The covariant.- 4. Application to curves.- 8. The moment map.- 1. Symplectic geometry.- 2. Symplectic quotients and geometric invariant theory.- 3. Kähler and hyperkähler quotients.- 4. Singular quotients.- 5. Geometry of the moment map.- 6. The cohomology of quotients: the symplectic case.- 7. The cohomology of quotients: the algebraic case.- 8. Vector bundles and the Yang-Mills functional.- 9. Yang-Mills theory over Riemann surfaces.- Appendix to Chapter 1.- Appendix to Chapter 2.- Appendix to Chapter 3.- Appendix to Chapter 4.- Appendix to Chapter 5.- Appendix to Chapter 7.- References.- Index of definitions and notations.