Error Inequalities in Polynomial Interpolation and Their Applications: Mathematics and Its Applications, cartea 262
Autor R.P. Agarwal, Patricia J.Y. Wongen Limba Engleză Paperback – 26 oct 2012
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 945.62 lei
- 15% Preț: 648.42 lei
- 15% Preț: 651.99 lei
- 15% Preț: 591.61 lei
- Preț: 394.29 lei
- 18% Preț: 955.56 lei
- 15% Preț: 586.85 lei
- 5% Preț: 655.17 lei
- 15% Preț: 658.70 lei
- 15% Preț: 648.56 lei
- 15% Preț: 604.84 lei
- Preț: 394.87 lei
- 15% Preț: 651.84 lei
- Preț: 374.76 lei
- Preț: 394.51 lei
- 15% Preț: 706.30 lei
- Preț: 391.02 lei
- Preț: 389.70 lei
- 15% Preț: 585.04 lei
- 15% Preț: 653.98 lei
- 15% Preț: 587.02 lei
- 20% Preț: 577.42 lei
- Preț: 395.47 lei
- 15% Preț: 601.88 lei
- 15% Preț: 594.53 lei
- 15% Preț: 651.84 lei
- 15% Preț: 649.06 lei
- Preț: 392.21 lei
- 15% Preț: 649.06 lei
- 15% Preț: 643.48 lei
- Preț: 389.49 lei
Preț: 393.13 lei
Nou
Puncte Express: 590
Preț estimativ în valută:
75.23€ • 78.64$ • 63.57£
75.23€ • 78.64$ • 63.57£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401048965
ISBN-10: 9401048967
Pagini: 380
Ilustrații: X, 366 p.
Dimensiuni: 160 x 240 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401048967
Pagini: 380
Ilustrații: X, 366 p.
Dimensiuni: 160 x 240 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Lidstone Interpolation.- 1.1 Introduction.- 1.2 Lidstone Polynomials.- 1.3 Interpolating Polynomial Representations.- 1.4 Error Representations.- 1.5 Error Estimates.- 1.6 Lidstone Boundary Value Problems.- References.- 2 Hermite Interpolation.- 2.1 Introduction.- 2.2 Interpolating Polynomial Representations.- 2.3 Error Representations.- 2.4 Error Estimates.- 2.5 Some Applications.- References.- 3 Abel 7#x2014; Gontscharoff Interpolation.- 3.1 Introduction.- 3.2 Interpolating Polynomial Representations.- 3.3 Error Representations.- 3.4 Error Estimates.- 3.5 Some Applications.- References.- 4 Miscellaneous Interpolation.- 4.1 Introduction.- 4.2 (n, p) and (p, n) Interpolation.- 4.3 (0, 0; m, n — m) Interpolation.- 4.4 (0; m, n — m) Interpolation.- 4.5 (0, 2, 0; m, n — m) Interpolation.- 4.6 (0 : l — 1, l : l + j — 1; m, n — m) Interpolation.- 4.7 (0; Lidstone) Interpolation.- 4.8 (0, 2, 0; Lidstone) Interpolation.- 4.9 (1, 3, 0, 1; Lidstone) Interpolation.- 4.10 (0 : l — 1, l : l + j — 1; Lidstone) Interpolation.- 4.11 (0, 2, 1; Lidstone) Interpolation.- References.- 5 Piecewise — Polynomial Interpolation.- 5.1 Introduction.- 5.2 Preliminaries.- 5.3 Piecewise Hermite Interpolation.- 5.4 Piecewise Lidstone Interpolation.- 5.5 Two Variable Piecewise Hermite Interpolation.- 5.6 Two Variable Piecewise Lidstone Interpolation.- References.- 6 Spline Interpolation.- 6.1 Introduction.- 6.2 Preliminaries.- 6.3 Cubic Spline Interpolation.- 6.4 Quintic Spline Interpolation: ? = 4.- 6.5 Approximated Quintic Splines: ? = 4.- 6.6 Quintic Spline Interpolation: ? = 3.- 6.7 Approximated Quintic Splines: ? = 3.- 6.8 Cubic Lidstone — Spline Interpolation.- 6.9 Quintic Lidstone — Spline Interpolation.- 6.10 L2 — Error Bounds for Spline Interpolation.- 6.11 TwoVariable Spline Interpolation.- 6.12 Two Variable Lidstone — Spline Interpolation.- 6.13 Some Applications.- References.- Name Index.