Cantitate/Preț
Produs

Espaces de Berkovich Globaux: Catégorie, Topologie, Cohomologie: Progress in Mathematics, cartea 353

Autor Thibaud Lemanissier, Jérôme Poineau
fr Limba Franceză Hardback – 6 apr 2024
Cet ouvrage propose une contribution aux fondements de la théorie des espaces de Berkovich globaux. Cette approche récente à la géométrie analytique, qui mêle les théories classiques des espaces analytiques complexes et p-adiques, fournit un cadre géométrique naturel pour plusieurs théories arithmétiques, telle que la théorie d’Arakelov. Les auteurs suivent trois axes principaux, inexplorés au-delà de la dimension 1 : catégorie, topologie et cohomologie. En particulier, ils introduisent une notion de domaine affinoïde surconvergent, pour lequel sont valables les analogues des théorèmes de Tate et de Kiehl.


This monograph contributes to the foundations of the theory of global Berkovich spaces. This recent approach of analytic geometry, which blends the known theories of complex and p-adic analytic spaces, provides a natural geometric framework for several arithmetic theories, such as Arakelov geometry. The authors focus on three main themes which have yet to be investigated beyond dimension 1 : category, topology, and cohomology. In particular, they introduce a notion of overconvergent affinoid domain where the analogues of Tate's and Kiehl's theorems hold.
Citește tot Restrânge

Din seria Progress in Mathematics

Preț: 71184 lei

Preț vechi: 86810 lei
-18% Nou

Puncte Express: 1068

Preț estimativ în valută:
13623 14328$ 11348£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031565038
ISBN-10: 3031565037
Ilustrații: XI, 289 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.59 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- Préliminaires et rappels.- Catégorie des espaces analytiques: définitions.- Quelques résultats topologiques sur les anneaux de fonctions analytiques.- Catégorie des espaces analytiques: propriétés.- Étude des morphismes finis.- Structure locale des espaces analytiques.- Espaces de Stein.- Bibliographie.- Index.- Liste des notations.

Textul de pe ultima copertă

Cet ouvrage propose une contribution aux fondements de la théorie des espaces de Berkovich globaux. Cette approche récente à la géométrie analytique, qui mêle les théories classiques des espaces analytiques complexes et p-adiques, fournit un cadre géométrique naturel pour plusieurs théories arithmétiques, telle que la théorie d’Arakelov. Les auteurs suivent trois axes principaux, inexplorés au-delà de la dimension 1 : catégorie, topologie et cohomologie. En particulier, ils introduisent une notion de domaine affinoïde surconvergent, pour lequel sont valables les analogues des théorèmes de Tate et de Kiehl.

This monograph contributes to the foundations of the theory of global Berkovich spaces. This recent approach of analytic geometry, which blends the known theories of complex and p-adic analytic spaces, provides a natural geometric framework for several arithmetic theories, such as Arakelov geometry. The authors focus on three main themes which have yet to be investigated beyond dimension 1 : category, topology, and cohomology. In particular, they introduce a notion of overconvergent affinoid domain where the analogues of Tate's and Kiehl's theorems hold.

Caracteristici

Propose un texte de référence sur les espaces de Berkovich globaux en toute dimension Présente de façon unifiée les géométries analytiques complexe et p-adique Illustre l’utilisation d’outils analytiques globaux dans des situations arithmétiques