Cantitate/Preț
Produs

Symplectic Geometry: An Introduction based on the Seminar in Bern, 1992: Progress in Mathematics, cartea 124

Autor B. Aebischer, M. Borer, M. Kälin, C. Leuenberger, Hans Martin Bach
en Limba Engleză Paperback – 5 noi 2012
The seminar Symplectic Geometry at the University of Berne in summer 1992 showed that the topic of this book is a very active field, where many different branches of mathematics come tog9ther: differential geometry, topology, partial differential equations, variational calculus, and complex analysis. As usual in such a situation, it may be tedious to collect all the necessary ingredients. The present book is intended to give the nonspecialist a solid introduction to the recent developments in symplectic and contact geometry. Chapter 1 gives a review of the symplectic group Sp(n,R), sympkctic manifolds, and Hamiltonian systems (last but not least to fix the notations). The 1\Iaslov index for closed curves as well as arcs in Sp(n, R) is discussed. This index will be used in chapters 5 and 8. Chapter 2 contains a more detailed account of symplectic manifolds start­ ing with a proof of the Darboux theorem saying that there are no local in­ variants in symplectic geometry. The most important examples of symplectic manifolds will be introduced: cotangent spaces and Kahler manifolds. Finally we discuss the theory of coadjoint orbits and the Kostant-Souriau theorem, which are concerned with the question of which homogeneous spaces carry a symplectic structure.
Citește tot Restrânge

Din seria Progress in Mathematics

Preț: 49403 lei

Preț vechi: 58121 lei
-15% Nou

Puncte Express: 741

Preț estimativ în valută:
9455 9845$ 7990£

Carte tipărită la comandă

Livrare economică 10-24 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783034875141
ISBN-10: 3034875142
Pagini: 260
Ilustrații: XII, 244 p.
Greutate: 0.27 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1 Introduction.- 2 Darboux’ Theorem and Examples of Symplectic Manifolds.- 3 Generating Functions.- 4 Symplectic Capacities.- 5 Floer Homology.- 6 Pseudoholomorphic Curves.- 7 Gromov’s Compactness Theorem from a Geometrical Point of View.- 8 Contact structures.- A Generalities on Homology and Cohomology.- A.1 Axioms for homology.- A.2 Axioms for cohomology.- A.3 Homomorphisms of (co)homology sequences.- A.4 The (co)homology sequence of a triple.- A.5 Homotopy equivalence and contractibility.- A.6 Direct sums.- A.7 Triads.- A.8 Mayer-Vietoris sequence of a triad.- References.