Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances: Studies in Computational Intelligence, cartea 1070
Autor Yanan Sun, Gary G. Yen, Mengjie Zhangen Limba Engleză Paperback – 10 noi 2023
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 748.92 lei 6-8 săpt. | |
Springer International Publishing – 10 noi 2023 | 748.92 lei 6-8 săpt. | |
Hardback (1) | 1146.96 lei 6-8 săpt. | |
Springer International Publishing – 9 noi 2022 | 1146.96 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 70% Preț: 235.75 lei
- 20% Preț: 1138.71 lei
- 20% Preț: 970.01 lei
- 20% Preț: 1428.22 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1093.52 lei
- 20% Preț: 565.38 lei
- 20% Preț: 638.34 lei
- 20% Preț: 1030.03 lei
- 20% Preț: 1552.26 lei
- 20% Preț: 632.66 lei
- 20% Preț: 646.41 lei
- 20% Preț: 976.52 lei
- 20% Preț: 974.09 lei
- 20% Preț: 973.27 lei
- 20% Preț: 1146.00 lei
- 20% Preț: 1420.10 lei
- 20% Preț: 1024.36 lei
- 20% Preț: 1030.03 lei
- 20% Preț: 1028.39 lei
- 18% Preț: 2458.20 lei
- 20% Preț: 972.45 lei
- 20% Preț: 1146.00 lei
- 20% Preț: 1144.40 lei
- 20% Preț: 1025.17 lei
- 20% Preț: 1435.50 lei
- 18% Preț: 1379.82 lei
- 18% Preț: 1105.93 lei
- 20% Preț: 1021.92 lei
- 20% Preț: 991.11 lei
- 20% Preț: 1027.60 lei
- 20% Preț: 1253.88 lei
- 20% Preț: 1022.74 lei
- 20% Preț: 971.65 lei
- 20% Preț: 1150.03 lei
- 20% Preț: 1142.76 lei
- 20% Preț: 1041.37 lei
- 20% Preț: 1144.40 lei
- 20% Preț: 1146.83 lei
- 20% Preț: 1434.72 lei
- 18% Preț: 988.76 lei
- 20% Preț: 980.55 lei
- 20% Preț: 1038.11 lei
- 20% Preț: 1262.78 lei
- 20% Preț: 977.30 lei
- 20% Preț: 1031.01 lei
- 20% Preț: 927.84 lei
- 20% Preț: 1153.30 lei
- 20% Preț: 1433.08 lei
Preț: 748.92 lei
Preț vechi: 936.16 lei
-20% Nou
Puncte Express: 1123
Preț estimativ în valută:
143.37€ • 149.03$ • 118.87£
143.37€ • 149.03$ • 118.87£
Carte tipărită la comandă
Livrare economică 08-22 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031168703
ISBN-10: 3031168704
Pagini: 331
Ilustrații: XVI, 331 p. 91 illus., 77 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.49 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3031168704
Pagini: 331
Ilustrații: XVI, 331 p. 91 illus., 77 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.49 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Part I: Fundamentals and Backgrounds.- Evolutionary Computation.- Deep Neural Networks.- Part II: Evolutionary Deep Neural Architecture Search for Unsupervised DNNs.- Architecture Design for Stacked AEs and DBNs.- Architecture Design for Convolutional Auto-Encoders.- Architecture Design for Variational Auto-Encoders.- Part III: Evolutionary Deep Neural Architecture Search for Supervised DNNs.- Architecture Design for Plain CNNs.- Architecture Design for RBs and DBs Based CNNs.- Architecture Design for Skip-Connection Based CNNs.- Hybrid GA and PSO for Architecture Design.- Internet Protocol Based Architecture Design.- Differential Evolution for Architecture Design.- Architecture Design for Analyzing Hyperspectral Images.- Part IV: Recent Advances in Evolutionary Deep Neural Architecture Search.- Encoding Space Based on Directed Acyclic Graphs.- End-to-End Performance Predictors.- Deep Neural Architecture Pruning.- Deep Neural Architecture Compression.- Distribution Training Framework for Architecture Design.
Textul de pe ultima copertă
This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields.
Caracteristici
Introduces the fundamentals and up-to-date methods of evolutionary deep neural architecture search Provides the target readers with sufficient details learning from scratch Inspires the students to develop more effective and efficient EDNAS methods