Genetic Programming: 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Proceedings: Lecture Notes in Computer Science, cartea 10781
Editat de Mauro Castelli, Lukas Sekanina, Mengjie Zhang, Stefano Cagnoni, Pablo García-Sánchezen Limba Engleză Paperback – 2 mar 2018
The 11 revised full papers presented together with 8 poster papers were carefully reviewed and selected from 36 submissions. The wide range of topics in this volume reflects the current state of research in the field. Thus, we see topics and applications including analysis of feature importance for metabolomics, semantic methods, evolution of boolean networks, generation of redundant features, ensembles of GP models, automatic design of grammatical representations, GP and neuroevolution, visual reinforcement learning, evolution of deep neural networks, evolution of graphs, and scheduling in heterogeneous networks.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1021.30 lei
- 20% Preț: 337.03 lei
- 20% Preț: 340.22 lei
- 20% Preț: 256.27 lei
- 20% Preț: 324.32 lei
- 20% Preț: 438.69 lei
- 20% Preț: 315.78 lei
- 20% Preț: 327.52 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 557.41 lei
- 20% Preț: 561.37 lei
- 15% Preț: 558.56 lei
- 20% Preț: 238.01 lei
- 20% Preț: 504.57 lei
- 20% Preț: 329.09 lei
- 20% Preț: 563.75 lei
- 20% Preț: 630.24 lei
- 20% Preț: 321.96 lei
- 20% Preț: 1361.10 lei
- 20% Preț: 310.26 lei
- 20% Preț: 607.39 lei
- Preț: 366.90 lei
- 20% Preț: 172.69 lei
- 20% Preț: 315.19 lei
- 20% Preț: 985.59 lei
- 20% Preț: 620.87 lei
- 20% Preț: 436.22 lei
- 20% Preț: 734.34 lei
- 20% Preț: 1034.49 lei
- 17% Preț: 360.19 lei
- 20% Preț: 309.90 lei
- 20% Preț: 573.92 lei
- 20% Preț: 301.95 lei
- 20% Preț: 307.71 lei
- 20% Preț: 369.12 lei
- 20% Preț: 327.52 lei
- 20% Preț: 794.65 lei
- 20% Preț: 569.16 lei
- Preț: 395.43 lei
- 20% Preț: 1138.26 lei
- 20% Preț: 734.34 lei
- 20% Preț: 315.78 lei
- 20% Preț: 330.70 lei
- 20% Preț: 538.29 lei
- 20% Preț: 326.98 lei
Preț: 321.80 lei
Preț vechi: 402.26 lei
-20% Nou
Puncte Express: 483
Preț estimativ în valută:
61.59€ • 64.97$ • 51.32£
61.59€ • 64.97$ • 51.32£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319775524
ISBN-10: 3319775529
Pagini: 307
Ilustrații: XII, 323 p. 80 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.47 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues
Locul publicării:Cham, Switzerland
ISBN-10: 3319775529
Pagini: 307
Ilustrații: XII, 323 p. 80 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.47 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues
Locul publicării:Cham, Switzerland
Cuprins
Using GP Is NEAT: Evolving Compositional Pattern Production Functions.- Evolving the Topology of Large Scale Deep Neural Networks.- Evolving Graphs by Graph Programming.- Pruning Techniques for Mixed Ensembles of Genetic Programming Models.- Analyzing Feature Importance for Metabolomics Using Genetic Programming.- Generating Redundant Features with Unsupervised Multi-Tree Genetic Programming.- On the Automatic Design of a Representation for Grammar-Based Genetic Programming.- Multi-Level Grammar Genetic Programming for Scheduling in Heterogeneous Networks.- Scaling Tangled Program Graphs to Visual Reinforcement Learning in ViZDoom.- Towards In Vivo Genetic Programming: Evolving Boolean Networks to Determine Cell States.- A Multiple Expression Alignment Framework for Genetic Programming.- Multi-Objective Evolution of Ultra-Fast General-Purpose Hash Functions.- A Comparative Study on Crossover in Cartesian Genetic Programming.- Evolving Better RNAfold Structure Prediction.- Geometric Crossover in Syntactic Space.- Investigating A Machine Breakdown Genetic Programming Approach for Dynamic Job Shop Scheduling.- Structurally Layered Representation Learning: Towards Deep Learning Through Genetic Programming.- Comparing Rule Evaluation Metrics for the Evolutionary Discovery of Multi-Relational Association Rules in the Semantic Web.- Genetic Programming Hyperheuristic with Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling.