Exotic Attractors: From Liapunov Stability to Riddled Basins: Progress in Mathematics, cartea 153
Autor Jorge Buescuen Limba Engleză Paperback – 18 apr 2012
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 749.27 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 580.82 lei
- Preț: 392.37 lei
- Preț: 395.09 lei
- Preț: 376.80 lei
- Preț: 390.25 lei
- 18% Preț: 729.53 lei
- 15% Preț: 652.49 lei
- 15% Preț: 649.22 lei
- 18% Preț: 897.95 lei
- Preț: 385.08 lei
- Preț: 391.02 lei
- Preț: 378.54 lei
- 15% Preț: 531.59 lei
- 15% Preț: 642.83 lei
- 15% Preț: 650.69 lei
- Preț: 381.21 lei
- Preț: 392.37 lei
- Preț: 398.53 lei
- 15% Preț: 699.28 lei
- Preț: 416.92 lei
- Preț: 385.84 lei
- 18% Preț: 902.65 lei
- 18% Preț: 802.28 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1129.83 lei
- 15% Preț: 494.03 lei
- 15% Preț: 593.08 lei
Preț: 379.68 lei
Nou
Puncte Express: 570
Preț estimativ în valută:
72.66€ • 74.96$ • 61.50£
72.66€ • 74.96$ • 61.50£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034874236
ISBN-10: 3034874235
Pagini: 148
Ilustrații: XIV, 130 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3034874235
Pagini: 148
Ilustrații: XIV, 130 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Attractors in Dynamical Systems.- 1.1 Introduction.- 1.2 Basic definitions.- 1.3 Topological and dynamical consequences.- 1.4 Attractors.- 1.5 Examples and counterexamples.- 1.6 Historical remarks and further comments.- 2 Liapunov Stability and Adding Machines.- 2.1 Introduction.- 2.2 Adding Machines and Denjoy maps.- 2.3 Stable Cantor sets are Adding Machines.- 2.4 Adding Machines and periodic points: interval maps.- 2.5 Interlude: Adding Machines as inverse limits.- 2.6 Stable ?-limit sets are Adding Machines.- 2.7 Classification of Adding Machines.- 2.8 Existence of Stable Adding Machines.- 2.9 Historical remarks and further comments.- 3 From Attractor to Chaotic Saddle: a journey through transverse instability.- 3.1 Introduction.- 3.2 Normal Liapunov exponents and stability indices.- 3.3 Normal parameters and normal stability.- 3.4 Example: ?2-symmetric maps on ?2.- 3.5 Example: synchronization of coupled systems.- 3.6 Historical remarks and further comments.
Recenzii
"The author gives a thorough insight into topological and ergodic properties of invariant subsets and their structure, classifies the main concepts which are used in the book and describes their characteristics. In addition, some new important concepts which, for the most part, have been previously known only from articles are presented...
The manner of exposition is in the tradition of mathematics: rigorous description of the concepts and notions of attractors in dynamics, and detailed proofs of main results. At the same time, the material is presented at an acceptable level for the wide circle of researchers and post-graduate students who apply ideas of dynamical systems. Moreover, because the book is self-contained, readers can use it as a fine introduction to the modern theory of attractors and related topics.
The book is clearly written, and it has many references (about 120 entries); in addition, some results are supported by helpful examples (and even sometimes counterexamples). Moreover, at the end of each chapter the readers can find very useful general comments and historical remarks."
-- Mathematical Reviews