Fault Tolerant Control Schemes Using Integral Sliding Modes: Studies in Systems, Decision and Control, cartea 61
Autor Mirza Tariq Hamayun, Christopher Edwards, Halim Alwien Limba Engleză Hardback – 9 mai 2016
The key attribute of a Fault Tolerant Control (FTC) system is its ability to maintain overall system stability and acceptable performance in the face of faults and failures within the feedback system. In this book Integral Sliding Mode (ISM) Control Allocation (CA) schemes for FTC are described, which have the potential to maintain close to nominal fault-free performance (for the entire system response), in the face of actuator faults and even complete failures of certain actuators. Broadly an ISM controller based around a model of the plant with the aim of creating a nonlinear fault tolerant feedback controller whose closed-loop performance is established during the design process. The second approach involves retro-fitting an ISM scheme to an existing feedback controller to introduce fault tolerance. This may be advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existi
ng control loops. A high fidelity benchmark model of a large transport aircraft is used to demonstrate the efficacy of the FTC schemes. In particular a scheme based on an LPV representation has been implemented and tested on a motion flight simulator.Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 612.56 lei 6-8 săpt. | |
Springer International Publishing – 27 mai 2018 | 612.56 lei 6-8 săpt. | |
Hardback (1) | 618.53 lei 6-8 săpt. | |
Springer International Publishing – 9 mai 2016 | 618.53 lei 6-8 săpt. |
Din seria Studies in Systems, Decision and Control
- 18% Preț: 902.35 lei
- 18% Preț: 701.93 lei
- 20% Preț: 627.40 lei
- 15% Preț: 619.80 lei
- 18% Preț: 866.68 lei
- 18% Preț: 911.45 lei
- 20% Preț: 1412.23 lei
- Preț: 255.34 lei
- 18% Preț: 974.46 lei
- 15% Preț: 628.61 lei
- 20% Preț: 835.23 lei
- 18% Preț: 1070.11 lei
- 20% Preț: 934.24 lei
- 24% Preț: 726.59 lei
- 18% Preț: 966.72 lei
- 20% Preț: 924.72 lei
- 18% Preț: 972.18 lei
- 20% Preț: 896.89 lei
- 18% Preț: 969.17 lei
- 18% Preț: 723.94 lei
- 18% Preț: 962.34 lei
- 18% Preț: 961.57 lei
- 18% Preț: 978.26 lei
- 18% Preț: 913.73 lei
- 18% Preț: 1076.94 lei
- 18% Preț: 1358.61 lei
- 20% Preț: 1119.09 lei
- 18% Preț: 1073.93 lei
- 18% Preț: 753.54 lei
- 18% Preț: 916.01 lei
- 20% Preț: 1416.66 lei
- 18% Preț: 1339.64 lei
- 20% Preț: 1135.74 lei
- 18% Preț: 1508.16 lei
- 20% Preț: 946.88 lei
- 20% Preț: 355.93 lei
- 20% Preț: 1232.55 lei
- 18% Preț: 1522.57 lei
- 18% Preț: 1070.11 lei
- 20% Preț: 1015.92 lei
- 18% Preț: 1352.55 lei
- 18% Preț: 925.11 lei
- 20% Preț: 1013.53 lei
- 20% Preț: 1009.58 lei
- 18% Preț: 967.63 lei
- 18% Preț: 1179.43 lei
- 18% Preț: 1185.52 lei
- 18% Preț: 921.63 lei
Preț: 618.53 lei
Preț vechi: 727.68 lei
-15% Nou
Puncte Express: 928
Preț estimativ în valută:
118.38€ • 124.88$ • 98.65£
118.38€ • 124.88$ • 98.65£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319322360
ISBN-10: 3319322362
Pagini: 199
Ilustrații: XVIII, 199 p. 69 illus., 49 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.49 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Systems, Decision and Control
Locul publicării:Cham, Switzerland
ISBN-10: 3319322362
Pagini: 199
Ilustrații: XVIII, 199 p. 69 illus., 49 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.49 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Systems, Decision and Control
Locul publicării:Cham, Switzerland
Cuprins
Fault Tolerant Control.- Integral Sliding Mode Control.- Design and Analysis of an Integral Sliding Mode Fault Tolerant Control Scheme.- A Fault Tolerant Direct Control Allocation Scheme with Integral Sliding Modes.- An Output Integral Sliding Mode FTC Scheme Using Control Allocation.- An Augmentation Scheme for Fault Tolerant Control using Integral Sliding Modes.- Nonlinear Integral Sliding Mode.- Linear Parameter Varying FTC Scheme Using Integral Sliding Modes.- Real-Time Implementation of an ISM Fault Tolerant Control Scheme on the SIMONA Flight Simulator.- Benchmark Model of Large Transport Aircraft.- Closed-Loop Stability and Feedback Gain Synthesis.
Recenzii
“The authors have produced a well-written and detailed text on fault tolerant control schemes using integral sliding modes, with applications to aircraft control. The book is dedicated to a diverse audience, from researchers in theoretical control systems to practicing control engineers.” (Dan Seliᶊteanu, Mathematical Reviews, February, 2017)
Textul de pe ultima copertă
The key attribute of a Fault Tolerant Control (FTC) system is its ability to maintain overall system stability and acceptable performance in the face of faults and failures within the feedback system. In this book Integral Sliding Mode (ISM) Control Allocation (CA) schemes for FTC are described, which have the potential to maintain close to nominal fault-free performance (for the entire system response), in the face of actuator faults and even complete failures of certain actuators. Broadly an ISM controller based around a model of the plant with the aim of creating a nonlinear fault tolerant feedback controller whose closed-loop performance is established during the design process. The second approach involves retro-fitting an ISM scheme to an existing feedback controller to introduce fault tolerance. This may be advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existing control loops. A high fidelity benchmark model of a large transport aircraft is used to demonstrate the efficacy of the FTC schemes. In particular a scheme based on an LPV representation has been implemented and tested on a motion flight simulator.
Caracteristici
Reports, at an advanced level, the current state of the art in fault detection and fault tolerant control using integral sliding modes Describes the use of integral sliding modes within the framework of fault tolerant control problems for the first time Presents novel integral sliding mode FTC schemes for Linear Parameter Varying (LPV) plants which allow the schemes to retain closed-loop performance over a wider range of operating conditions whilst still exploiting well understood linear systems synthesis tools Includes case studies on how these schemes can be applied to problems arising in the flight control systems Includes supplementary material: sn.pub/extras