Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation: The Springer International Series in Engineering and Computer Science, cartea 314
Autor Jouke Annemaen Limba Engleză Paperback – 13 iul 2013
Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips.
Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation.
Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 625.52 lei 6-8 săpt. | |
Springer Us – 13 iul 2013 | 625.52 lei 6-8 săpt. | |
Hardback (1) | 631.61 lei 6-8 săpt. | |
Springer Us – 31 mai 1995 | 631.61 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- Preț: 119.98 lei
- 24% Preț: 1041.97 lei
- 20% Preț: 422.81 lei
- Preț: 206.36 lei
- 20% Preț: 313.26 lei
- 20% Preț: 630.47 lei
- 23% Preț: 708.06 lei
- 18% Preț: 1200.75 lei
- 18% Preț: 945.46 lei
- 20% Preț: 633.05 lei
- 18% Preț: 929.55 lei
- 20% Preț: 633.55 lei
- 15% Preț: 624.57 lei
- 20% Preț: 630.80 lei
- 18% Preț: 930.00 lei
- 20% Preț: 631.45 lei
- 20% Preț: 974.74 lei
- 20% Preț: 632.91 lei
- 18% Preț: 927.68 lei
- 20% Preț: 975.39 lei
- 18% Preț: 937.60 lei
- 20% Preț: 631.93 lei
- 15% Preț: 636.39 lei
- 18% Preț: 930.96 lei
- 18% Preț: 1196.59 lei
- 18% Preț: 938.22 lei
- 15% Preț: 630.97 lei
- 18% Preț: 929.24 lei
- 18% Preț: 928.16 lei
- 20% Preț: 1258.58 lei
Preț: 625.52 lei
Preț vechi: 735.90 lei
-15% Nou
Puncte Express: 938
Preț estimativ în valută:
119.75€ • 124.47$ • 99.29£
119.75€ • 124.47$ • 99.29£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461359906
ISBN-10: 1461359902
Pagini: 238
Ilustrații: XIII, 238 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 1461359902
Pagini: 238
Ilustrații: XIII, 238 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 2 The Vector Decomposition Method.- 3 Dynamics of Single Layer Nets.- 4 Unipolar Input Signals in Single-Layer Feed-Forward Neural Networks.- 5 Cross-talk in Single-Layer Feed-Forward Neural Networks.- 6 Precision Requirements for Analog Weight Adaptation Circuitry for Single-Layer Nets.- 7 Discretization of Weight Adaptations in Single-Layer Nets.- 8 Learning Behavior and Temporary Minima of Two-Layer Neural Networks.- 9 Biases and Unipolar Input signals for Two-Layer Neural Networks.- 10 Cost Functions for Two-Layer Neural Networks.- 11 Some issues for f’ (x).- 12 Feed-forward hardware.- 13 Analog weight adaptation hardware.- 14 Conclusions.- Nomenclature.