Finite Dimensional Convexity and Optimization: Studies in Economic Theory, cartea 13
P. Gourdel Autor Monique Florenzano, Cuong Le Vanen Limba Engleză Hardback – 13 mar 2001
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 621.50 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 24 sep 2012 | 621.50 lei 6-8 săpt. | |
Hardback (1) | 627.43 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 13 mar 2001 | 627.43 lei 6-8 săpt. |
Din seria Studies in Economic Theory
- 18% Preț: 938.66 lei
- Preț: 386.77 lei
- 18% Preț: 933.27 lei
- Preț: 376.22 lei
- 15% Preț: 632.24 lei
- Preț: 378.63 lei
- Preț: 386.57 lei
- 18% Preț: 1221.96 lei
- 18% Preț: 1215.93 lei
- 15% Preț: 630.97 lei
- 15% Preț: 631.45 lei
- 15% Preț: 630.33 lei
- 15% Preț: 627.93 lei
- 15% Preț: 631.77 lei
- 15% Preț: 632.73 lei
- 18% Preț: 936.02 lei
- 15% Preț: 630.01 lei
- 18% Preț: 931.71 lei
- 15% Preț: 623.45 lei
- 18% Preț: 1001.75 lei
- 15% Preț: 634.96 lei
- 15% Preț: 628.24 lei
- 15% Preț: 639.44 lei
- Preț: 394.10 lei
- 18% Preț: 935.28 lei
- 15% Preț: 626.48 lei
- 18% Preț: 943.64 lei
Preț: 627.43 lei
Preț vechi: 738.15 lei
-15% Nou
Puncte Express: 941
Preț estimativ în valută:
120.08€ • 124.73$ • 99.74£
120.08€ • 124.73$ • 99.74£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540415169
ISBN-10: 3540415165
Pagini: 172
Ilustrații: XII, 154 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.42 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Economic Theory
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540415165
Pagini: 172
Ilustrații: XII, 154 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.42 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Economic Theory
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Convexity in ?n.- 1.1 Basic concepts.- 1.2. Topological properties of convex sets.- Exercises.- 2. Separation and Polarity.- 2.1 Separation of convex sets.- 2.2 Polars of convex sets and orthogonal subspaces.- Exercises.- 3. Extremal Structure of Convex Sets.- 3.1 Extreme points and faces of convex sets.- 3.2 Application to linear inequalities. Weyl’s theorem.- 3.3 Extreme points and extremal subsets of a polyhedral convex set.- Exercises.- 4. Linear Programming.- 4.1 Necessary and sufficient conditions of optimality.- 4.2 The duality theorem of linear programming.- 4.3 The simplex method.- Exercises.- 5. Convex Functions.- 5.1 Basic definitions and properties.- 5.2 Continuity theorems.- 5.3 Continuity properties of collections of convex functions.- Exercises.- 6. Differential Theory of Convex Functions.- 6.1 The Hahn-Banach dominated extension theorem.- 6.2 Sublinear functions.- 6.3 Support functions.- 6.4 Directional derivatives.- 6.5 Subgradients and subdifferential of a convex function.- 6.6 Differentiability of convex functions.- 6.7 Differential continuity for convex functions.- Exercises.- 7. Convex Optimization With Convex Constraints.- 7.1 The minimum of a convex function f: ?n ? ?.- 7.2 Kuhn-Tucker Conditions.- 7.3 Value function.- Exercises.- 8. Non Convex Optimization.- 8.1 Quasi-convex functions.- 8.2 Minimization of quasi-convex functions.- 8.3 Differentiate optimization.- Exercises.- A. Appendix.- A.1 Some preliminaries on topology.- A.2 The Mean value theorem.- A.3 The Local inversion theorem.- A.4 The implicit functions theorem.
Caracteristici
Optimization is presented especially for use in the field of economic theory