First-order and Stochastic Optimization Methods for Machine Learning: Springer Series in the Data Sciences
Autor Guanghui Lanen Limba Engleză Paperback – 16 mai 2021
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 888.54 lei 43-57 zile | |
Springer International Publishing – 16 mai 2021 | 888.54 lei 43-57 zile | |
Hardback (1) | 893.63 lei 43-57 zile | |
Springer International Publishing – 16 mai 2020 | 893.63 lei 43-57 zile |
Preț: 888.54 lei
Preț vechi: 1083.59 lei
-18% Nou
Puncte Express: 1333
Preț estimativ în valută:
170.05€ • 176.64$ • 141.25£
170.05€ • 176.64$ • 141.25£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030395704
ISBN-10: 3030395707
Pagini: 582
Ilustrații: XIII, 582 p. 18 illus., 16 illus. in color.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.9 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
ISBN-10: 3030395707
Pagini: 582
Ilustrații: XIII, 582 p. 18 illus., 16 illus. in color.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.9 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
Cuprins
Machine Learning Models.- Convex Optimization Theory.- Deterministic Convex Optimization.- Stochastic Convex Optimization.- Convex Finite-sum and Distributed Optimization.- Nonconvex Optimization.- Projection-free Methods.- Operator Sliding and Decentralized Optimization.
Textul de pe ultima copertă
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Caracteristici
Presents comprehensive study of topics in machine learning from introductory material through most complicated algorithms Summarizes most recent findings in the area of machine learning Addresses a broad audience in machine learning, artificial intelligence, and mathematical programming Includes exercises