Lectures on the Nearest Neighbor Method: Springer Series in the Data Sciences
Autor Gérard Biau, Luc Devroyeen Limba Engleză Hardback – 15 dec 2015
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 891.62 lei 6-8 săpt. | |
Springer International Publishing – 21 mar 2019 | 891.62 lei 6-8 săpt. | |
Hardback (1) | 745.91 lei 17-23 zile | +64.28 lei 10-14 zile |
Springer International Publishing – 15 dec 2015 | 745.91 lei 17-23 zile | +64.28 lei 10-14 zile |
Preț: 745.91 lei
Preț vechi: 981.47 lei
-24% Nou
Puncte Express: 1119
Preț estimativ în valută:
142.74€ • 148.12$ • 119.31£
142.74€ • 148.12$ • 119.31£
Carte disponibilă
Livrare economică 18-24 februarie
Livrare express 11-15 februarie pentru 74.27 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319253862
ISBN-10: 3319253867
Pagini: 290
Ilustrații: IX, 290 p. 4 illus. in color.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.62 kg
Ediția:1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
ISBN-10: 3319253867
Pagini: 290
Ilustrații: IX, 290 p. 4 illus. in color.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.62 kg
Ediția:1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.
Recenzii
“This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. … It is intended for a large audience, including students, teachers, and researchers.” (Florin Gorunescu, zbMATH 1330.68001, 2016)
Textul de pe ultima copertă
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Caracteristici
Presents a rigorous overview of nearest neighbor methods Many different components covered: statistical, probabilistic, combinatorial, and geometric ideas Extensive appendix material provided