Flag-transitive Steiner Designs: Frontiers in Mathematics
Autor Michael Huberen Limba Engleză Paperback – 19 feb 2009
Din seria Frontiers in Mathematics
- Preț: 405.12 lei
- Preț: 398.72 lei
- 15% Preț: 471.64 lei
- Preț: 473.46 lei
- Preț: 402.16 lei
- Preț: 396.64 lei
- 15% Preț: 625.21 lei
- Preț: 466.92 lei
- Preț: 401.61 lei
- Preț: 401.61 lei
- Preț: 420.87 lei
- Preț: 402.10 lei
- Preț: 498.72 lei
- 15% Preț: 677.23 lei
- Preț: 404.23 lei
- Preț: 432.46 lei
- Preț: 410.67 lei
- Preț: 406.99 lei
- Preț: 400.67 lei
- Preț: 398.83 lei
- Preț: 403.45 lei
- Preț: 409.08 lei
- Preț: 464.39 lei
- Preț: 439.86 lei
- Preț: 399.78 lei
- Preț: 408.27 lei
- Preț: 404.23 lei
- Preț: 403.82 lei
- 15% Preț: 677.54 lei
- Preț: 431.52 lei
- Preț: 403.82 lei
- Preț: 494.62 lei
- Preț: 416.22 lei
- Preț: 410.30 lei
- Preț: 403.65 lei
- Preț: 469.01 lei
- Preț: 411.24 lei
- Preț: 406.99 lei
- Preț: 442.62 lei
- Preț: 406.99 lei
- Preț: 407.36 lei
- Preț: 406.99 lei
- Preț: 400.88 lei
- Preț: 450.05 lei
- Preț: 478.02 lei
- Preț: 406.22 lei
- 15% Preț: 560.00 lei
- Preț: 403.28 lei
- 15% Preț: 507.57 lei
Preț: 266.30 lei
Nou
Puncte Express: 399
Preț estimativ în valută:
50.96€ • 53.90$ • 42.51£
50.96€ • 53.90$ • 42.51£
Carte tipărită la comandă
Livrare economică 30 decembrie 24 - 13 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034600019
ISBN-10: 3034600011
Pagini: 136
Ilustrații: IX, 125 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.27 kg
Ediția:2009
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Frontiers in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3034600011
Pagini: 136
Ilustrații: IX, 125 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.27 kg
Ediția:2009
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Frontiers in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Incidence Structures and Steiner Designs.- Permutation Groups and Group Actions.- Number Theoretical Tools.- Highly Symmetric Steiner Designs.- A Census of Highly Symmetric Steiner Designs.- The Classification of Flag-transitive Steiner Quadruple Systems.- The Classification of Flag-transitive Steiner 3-Designs.- The Classification of Flag-transitive Steiner 4-Designs.- The Classification of Flag-transitive Steiner 5-Designs.- The Non-Existence of Flag-transitive Steiner 6-Designs.
Recenzii
This monograph provides an excellent development of the existence and nonexistenceof flag-transitive and other symmetric Steiner t-designs. In particular, it develops acomplete classification of all flag-transitive Steiner t-designs for strength t at least three.The topic is a beautiful mixture of algebra and combinatorics, and it impinges onmany applications areas. Of particular value is the material providing the necessarybackground in group theory, incidence geometry, number theory, and combinatorialdesign theory to support a complete exposition of the many results. These form thefocus of the first three chapters. Chapter 4 then develops results on symmetric actionsof groups on Steiner systems, and provides many helpful examples. Chapter 5 thenstates the main existence result for flag-transitive Steiner systems, and places this inthe context of related existence results for highly symmetric actions. Chapters 6 through10 fill in the details of the existence proof. Steiner quadruple systems are treated inChapter 6, while strength three in general is treated in Chapter 7. Chapters 8 and 9then treat the cases of strengths four and five, respectively. Finally Chapter 10 providesthe proof that no flag-transitive Steiner 6-design exists.The presentation is lucid and accessible. Indeed the author has done a first rate job ofpresenting material that involves many deep ideas and a number of technical issues. Atthe same time, the monograph indicates useful next steps to take in the research topic.Zentralblatt Math - Charles J. Colbourn (Tempe)
Caracteristici
First full discussion of flag-transitive Steiner designs At the interface of several disciplines, such as finite or incidence geometry, finite group theory, combinatorics, coding theory, and cryptography Presents in a sufficiently self-contained and unified manner the solutions of challenging mathematical problems which have been object of research for more than 40 years Fertile interplay of methods from finite group theory, incidence geometry, combinatorics, and number theory Contains a broad introduction with many illustrative examples; accessible to graduate students The author has been awarded a Heinz Maier-Leibnitz-Prize 2008 of the German Research Foundation (DFG) for his work on flag-transitive Steiner designs Includes supplementary material: sn.pub/extras