Zero Product Determined Algebras: Frontiers in Mathematics
Autor Matej Brešaren Limba Engleză Paperback – 26 aug 2021
The book is intended for researchers and graduate students in ring theory, Banach algebra theory, and nonassociative algebra.
Din seria Frontiers in Mathematics
- Preț: 400.71 lei
- Preț: 398.72 lei
- 15% Preț: 480.26 lei
- Preț: 482.08 lei
- Preț: 402.16 lei
- 15% Preț: 636.64 lei
- Preț: 475.41 lei
- Preț: 408.91 lei
- Preț: 408.91 lei
- Preț: 428.54 lei
- Preț: 409.40 lei
- Preț: 507.80 lei
- 15% Preț: 689.61 lei
- Preț: 411.57 lei
- Preț: 440.32 lei
- Preț: 418.14 lei
- Preț: 414.41 lei
- Preț: 407.96 lei
- Preț: 406.09 lei
- Preț: 410.79 lei
- Preț: 416.52 lei
- Preț: 472.85 lei
- Preț: 447.84 lei
- Preț: 407.04 lei
- Preț: 415.68 lei
- Preț: 411.57 lei
- Preț: 411.16 lei
- 15% Preț: 689.93 lei
- Preț: 439.36 lei
- Preț: 411.16 lei
- Preț: 503.64 lei
- Preț: 423.80 lei
- Preț: 417.77 lei
- Preț: 411.00 lei
- Preț: 477.55 lei
- Preț: 418.73 lei
- Preț: 271.20 lei
- Preț: 414.41 lei
- Preț: 450.66 lei
- Preț: 414.41 lei
- Preț: 414.78 lei
- Preț: 414.41 lei
- Preț: 408.18 lei
- Preț: 458.23 lei
- Preț: 486.71 lei
- Preț: 413.62 lei
- 15% Preț: 570.21 lei
- Preț: 410.61 lei
- 15% Preț: 516.83 lei
Preț: 396.64 lei
Nou
Puncte Express: 595
Preț estimativ în valută:
75.92€ • 79.61$ • 62.73£
75.92€ • 79.61$ • 62.73£
Carte disponibilă
Livrare economică 08-22 ianuarie 25
Livrare express 25-31 decembrie pentru 29.38 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030802417
ISBN-10: 3030802418
Pagini: 150
Ilustrații: VIII, 185 p.
Dimensiuni: 168 x 240 x 16 mm
Greutate: 0.32 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Frontiers in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3030802418
Pagini: 150
Ilustrații: VIII, 185 p.
Dimensiuni: 168 x 240 x 16 mm
Greutate: 0.32 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Birkhäuser
Seria Frontiers in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
- Part I Algebraic Theory. - Zero Product Determined Nonassociative Algebras. - Zero Product Determined Rings and Algebras. - Zero Lie/Jordan Product Determined Algebras. - Part II Analytic Theory. - Zero Product Determined Nonassociative Banach Algebras. - Zero Product Determined Banach Algebras. - Zero Lie/Jordan Product Determined Banach Algebras. - Part III Applications. - Homomorphisms and Related Maps. - Derivations and Related Maps. - Miscellany.
Recenzii
“This book is about zero product determined algebras and is written in an attractive way. It deals with the introduction and study of this class of algebras. Most of this book is taken from research articles from the last 15 years and is suitable for researchers in this field and students with different backgrounds and can be used for self-study.” (Hoger Ghahramani, Mathematical Reviews, March, 2023)
Notă biografică
Matej Brešar is a Professor at University of Ljubljana and the University of Maribor. His research focus lies in noncommutative algebra and its applications. He is the author or co-author of over 160 research papers, the co-author of the monograph Functional Identities (Birkhauser, 2007), and the author of the textbooks Introduction to Noncommutative Algebra (Springer, 2014) and Undergraduate Algebra. A unified Approach (Springer, 2019).
Textul de pe ultima copertă
This book provides a concise survey of the theory of zero product-determined algebras, which has been developed over the last 15 years. It is divided into three parts. The first part presents the purely algebraic branch of the theory, the second part presents the functional analytic branch, and the third part discusses various applications.
The book is intended for researchers and graduate students in ring theory, Banach algebra theory, and nonassociative algebra.
Caracteristici
Provides the first systematic account of the theory of zero product determined algebras Presents applications to various problems in algebra and functional analysis Discusses a wide variety of mathematical topics in an accessible manner