Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields: Frontiers in Mathematics
Autor Yuan-Jen Chiangen Limba Engleză Paperback – 28 iun 2013
Din seria Frontiers in Mathematics
- Preț: 400.71 lei
- Preț: 398.72 lei
- 15% Preț: 480.26 lei
- Preț: 482.08 lei
- Preț: 402.16 lei
- Preț: 396.64 lei
- 15% Preț: 636.64 lei
- Preț: 475.41 lei
- Preț: 408.91 lei
- Preț: 408.91 lei
- Preț: 428.54 lei
- Preț: 409.40 lei
- Preț: 507.80 lei
- 15% Preț: 689.61 lei
- Preț: 411.57 lei
- Preț: 440.32 lei
- Preț: 418.14 lei
- Preț: 414.41 lei
- Preț: 407.96 lei
- Preț: 406.09 lei
- Preț: 410.79 lei
- Preț: 416.52 lei
- Preț: 472.85 lei
- Preț: 447.84 lei
- Preț: 407.04 lei
- Preț: 415.68 lei
- Preț: 411.57 lei
- Preț: 411.16 lei
- 15% Preț: 689.93 lei
- Preț: 439.36 lei
- Preț: 411.16 lei
- Preț: 503.64 lei
- Preț: 423.80 lei
- Preț: 417.77 lei
- Preț: 411.00 lei
- Preț: 477.55 lei
- Preț: 418.73 lei
- Preț: 271.20 lei
- Preț: 414.41 lei
- Preț: 450.66 lei
- Preț: 414.41 lei
- Preț: 414.78 lei
- Preț: 414.41 lei
- Preț: 408.18 lei
- Preț: 486.71 lei
- Preț: 413.62 lei
- 15% Preț: 570.21 lei
- Preț: 410.61 lei
- 15% Preț: 516.83 lei
Preț: 458.23 lei
Nou
Puncte Express: 687
Preț estimativ în valută:
87.71€ • 91.97$ • 72.47£
87.71€ • 91.97$ • 72.47£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034805339
ISBN-10: 3034805330
Pagini: 330
Ilustrații: XXI, 399 p. 9 illus., 1 illus. in color.
Dimensiuni: 168 x 240 x 27 mm
Greutate: 0.73 kg
Ediția:2013
Editura: Springer
Colecția Birkhäuser
Seria Frontiers in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3034805330
Pagini: 330
Ilustrații: XXI, 399 p. 9 illus., 1 illus. in color.
Dimensiuni: 168 x 240 x 27 mm
Greutate: 0.73 kg
Ediția:2013
Editura: Springer
Colecția Birkhäuser
Seria Frontiers in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Preface. 1 Harmonic Maps.- 2 Wave Maps.-3 Yang-Mills Fields.- 4 Biharmonic Maps.- 5 Biwave Maps.- 6 Bi-Yang-Mills Fields.-7 Exponential Harmonic Maps.-8 Exponential Wave Maps.- 9. Exponential Yang-Mills Connections.- Index.
Recenzii
From the book reviews:
“The monograph under review gathers developments in the theory of harmonic maps, wave maps, and Yang-Mills fields, and their generalisations to biharmonic maps, biwave maps, and bi-Yang-Mills fields. … The present book is a very useful text for experts in the field of harmonic and biharmonic maps, providing us with a rich and updated source of information on the subject.” (Monica Alice Aprodu, Mathematical Reviews, July, 2014)
“The monograph under review gathers developments in the theory of harmonic maps, wave maps, and Yang-Mills fields, and their generalisations to biharmonic maps, biwave maps, and bi-Yang-Mills fields. … The present book is a very useful text for experts in the field of harmonic and biharmonic maps, providing us with a rich and updated source of information on the subject.” (Monica Alice Aprodu, Mathematical Reviews, July, 2014)
Textul de pe ultima copertă
Harmonic maps between Riemannian manifolds were first established in 1964. Wave maps are harmonic maps on Minkowski spaces and have been studied since the 1990s. Yang-Mills fields, the critical points of Yang-Mills functionals of connections whose curvature tensors are harmonic, were explored by a few physicists in the 1950s, and biharmonic maps (generalizing harmonic maps) were introduced in 1986. The book presents an overview of the important developments made in these fields since they first came up. Furthermore, it introduces biwave maps (generalizing wave maps) which were first studied in 2009, and bi-Yang-Mills fields (generalizing Yang-Mills fields) first investigated in 2008. Other topics discussed are exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields.
Caracteristici
Presents the recent crucial developments of harmonic maps into biharmonic maps, of wave maps into biwave maps and of Yang-Mills fields into bi-Yang-Mills fields Discusses exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields Introduces biwave maps (generalizing wave maps) and bi-Yang-Mills fields (generalizing Yang-Mills fields)