From Statistics to Neural Networks: Theory and Pattern Recognition Applications: NATO ASI Subseries F:, cartea 136
Editat de Vladimir Cherkassky, Jerome H. Friedman, Harry Wechsleren Limba Engleză Paperback – 22 dec 2011
Din seria NATO ASI Subseries F:
- 20% Preț: 650.27 lei
- 20% Preț: 668.55 lei
- 20% Preț: 992.44 lei
- 18% Preț: 1239.19 lei
- 20% Preț: 1928.45 lei
- 20% Preț: 654.37 lei
- 18% Preț: 1234.00 lei
- 20% Preț: 709.78 lei
- 20% Preț: 656.03 lei
- 18% Preț: 1854.94 lei
- 20% Preț: 374.97 lei
- 20% Preț: 991.94 lei
- 20% Preț: 671.02 lei
- 20% Preț: 1925.96 lei
- 20% Preț: 994.73 lei
- Preț: 389.49 lei
- 20% Preț: 657.99 lei
- 20% Preț: 655.20 lei
- 18% Preț: 1225.31 lei
- 18% Preț: 952.09 lei
- 20% Preț: 332.06 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 644.81 lei
- Preț: 395.85 lei
- 18% Preț: 1221.07 lei
- 15% Preț: 643.34 lei
- 20% Preț: 645.47 lei
- 20% Preț: 1282.98 lei
- 20% Preț: 656.36 lei
- 20% Preț: 1283.31 lei
- 20% Preț: 1924.15 lei
- 20% Preț: 362.24 lei
Preț: 651.42 lei
Preț vechi: 814.28 lei
-20% Nou
Puncte Express: 977
Preț estimativ în valută:
124.65€ • 130.47$ • 103.75£
124.65€ • 130.47$ • 103.75£
Carte tipărită la comandă
Livrare economică 31 martie-14 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642791215
ISBN-10: 3642791212
Pagini: 416
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria NATO ASI Subseries F:
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642791212
Pagini: 416
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria NATO ASI Subseries F:
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
An Overview of Predictive Learning and Function Approximation.- Nonparametric Regression and Classification Part I Nonparametric Regression.- Nonparametric Regression and Classification Part II Nonparametric Classification.- Neural Networks, Bayesian a posteriori Probabilities, and Pattern Classification.- Flexible Non-linear Approaches to Classification.- Parametric Statistical Estimation with Artificial Neural Networks: A Condensed Discussion.- Prediction Risk and Architecture Selection for Neural Networks.- Regularisation Theory, Radial Basis Functions and Networks.- Self-Organizing Networks for Nonparametric Regression.- Neural Preprocessing Methods.- Improved Hidden Markov Models for Speech Recognition Through Neural Network Learning.- Neural Network Architectures for Pattern Recognition.- Cooperative Decision Making Processes and Their Neural Net Implementation.- Associative Memory Networks and Sparse Similarity Preserving Codes.- Multistrategy Learning and Optimal Mappings.- Self-Organizing Neural Networks for Supervised and Unsupervised Learning and Prediction.- Recognition of 3-D Objects from Multiple 2-D Views by a Self-Organizing Neural Architecture.- Chaotic Dynamics in Neural Pattern Recognition.