From Statistics to Neural Networks: Theory and Pattern Recognition Applications: NATO ASI Subseries F:, cartea 136
Editat de Vladimir Cherkassky, Jerome H. Friedman, Harry Wechsleren Limba Engleză Paperback – 22 dec 2011
Din seria NATO ASI Subseries F:
- 20% Preț: 615.93 lei
- 20% Preț: 633.26 lei
- 20% Preț: 939.94 lei
- 18% Preț: 1173.60 lei
- 20% Preț: 1826.21 lei
- 20% Preț: 619.83 lei
- 18% Preț: 1168.67 lei
- 20% Preț: 672.30 lei
- 20% Preț: 621.41 lei
- 18% Preț: 1756.62 lei
- 20% Preț: 355.27 lei
- 20% Preț: 939.46 lei
- 20% Preț: 635.61 lei
- 20% Preț: 1823.87 lei
- 20% Preț: 942.11 lei
- Preț: 369.06 lei
- 20% Preț: 623.26 lei
- 20% Preț: 620.61 lei
- 18% Preț: 1160.44 lei
- 18% Preț: 901.73 lei
- 20% Preț: 314.63 lei
- 20% Preț: 1216.46 lei
- 20% Preț: 610.76 lei
- Preț: 375.09 lei
- 18% Preț: 1156.43 lei
- 15% Preț: 609.40 lei
- 20% Preț: 611.39 lei
- 20% Preț: 1215.04 lei
- 20% Preț: 621.73 lei
- 20% Preț: 1215.36 lei
- 20% Preț: 1822.15 lei
- 20% Preț: 343.20 lei
Preț: 617.04 lei
Preț vechi: 771.30 lei
-20% Nou
Puncte Express: 926
Preț estimativ în valută:
118.13€ • 127.99$ • 98.65£
118.13€ • 127.99$ • 98.65£
Carte tipărită la comandă
Livrare economică 12-26 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642791215
ISBN-10: 3642791212
Pagini: 416
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria NATO ASI Subseries F:
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642791212
Pagini: 416
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria NATO ASI Subseries F:
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
An Overview of Predictive Learning and Function Approximation.- Nonparametric Regression and Classification Part I Nonparametric Regression.- Nonparametric Regression and Classification Part II Nonparametric Classification.- Neural Networks, Bayesian a posteriori Probabilities, and Pattern Classification.- Flexible Non-linear Approaches to Classification.- Parametric Statistical Estimation with Artificial Neural Networks: A Condensed Discussion.- Prediction Risk and Architecture Selection for Neural Networks.- Regularisation Theory, Radial Basis Functions and Networks.- Self-Organizing Networks for Nonparametric Regression.- Neural Preprocessing Methods.- Improved Hidden Markov Models for Speech Recognition Through Neural Network Learning.- Neural Network Architectures for Pattern Recognition.- Cooperative Decision Making Processes and Their Neural Net Implementation.- Associative Memory Networks and Sparse Similarity Preserving Codes.- Multistrategy Learning and Optimal Mappings.- Self-Organizing Neural Networks for Supervised and Unsupervised Learning and Prediction.- Recognition of 3-D Objects from Multiple 2-D Views by a Self-Organizing Neural Architecture.- Chaotic Dynamics in Neural Pattern Recognition.