Functional Analysis: Vol. I: Operator Theory: Advances and Applications, cartea 85
Autor Yurij M. Berezansky, Zinovij G. Sheftel, Georgij F. Usen Limba Engleză Hardback – 28 mar 1996
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 391.79 lei 6-8 săpt. | |
Birkhäuser Basel – 18 sep 2011 | 391.79 lei 6-8 săpt. | |
Birkhäuser Basel – 10 oct 2011 | 951.77 lei 6-8 săpt. | |
Hardback (1) | 958.07 lei 6-8 săpt. | |
Birkhäuser Basel – 28 mar 1996 | 958.07 lei 6-8 săpt. |
Din seria Operator Theory: Advances and Applications
- Preț: 311.96 lei
- 20% Preț: 574.08 lei
- 20% Preț: 574.08 lei
- 18% Preț: 961.55 lei
- Preț: 402.00 lei
- 15% Preț: 648.05 lei
- 18% Preț: 737.71 lei
- 15% Preț: 653.14 lei
- Preț: 384.48 lei
- 15% Preț: 644.82 lei
- 15% Preț: 645.79 lei
- 15% Preț: 650.04 lei
- 15% Preț: 646.11 lei
- 15% Preț: 660.83 lei
- Preț: 388.90 lei
- 15% Preț: 639.08 lei
- 18% Preț: 728.11 lei
- 15% Preț: 648.05 lei
- 15% Preț: 647.08 lei
- 18% Preț: 745.33 lei
- 15% Preț: 643.34 lei
- 15% Preț: 645.79 lei
- 18% Preț: 1127.60 lei
- 18% Preț: 1128.89 lei
- 15% Preț: 648.89 lei
- 18% Preț: 1124.47 lei
- Preț: 395.63 lei
- 15% Preț: 662.62 lei
- 15% Preț: 646.43 lei
- Preț: 392.75 lei
- 18% Preț: 940.09 lei
- 18% Preț: 960.96 lei
Preț: 958.07 lei
Preț vechi: 1168.38 lei
-18% Nou
Puncte Express: 1437
Preț estimativ în valută:
183.37€ • 188.98$ • 154.81£
183.37€ • 188.98$ • 154.81£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764353445
ISBN-10: 3764353449
Pagini: 452
Ilustrații: XIX, 426 p.
Dimensiuni: 156 x 234 x 30 mm
Greutate: 0.81 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3764353449
Pagini: 452
Ilustrații: XIX, 426 p.
Dimensiuni: 156 x 234 x 30 mm
Greutate: 0.81 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Measure Theory.- 1 Operations on Sets. Ordered Sets.- 2 Systems of Sets.- 3 Measure of a Set. Simple Properties of Measures.- 4 Outer Measure.- 5 Measurable Sets. Extension of a Measure.- 6 Properties of Measures and Measurable Sets.- 7 Monotone Classes of Sets. Uniqueness of Extensions of Measures.- 8 Measures Taking Infinite Values.- 9 Lebesgue Measure of Bounded Linear Sets.- 10 Lebesgue Measure on the Real Line.- 11 Lebesgue Measure in the N-Dimensional Euclidean Space.- 12 Discrete Measures.- 13 Some Properties of Nondecreasing Functions.- 14 Construction of a Measure for a Given Nondecreasing Function. Lebesgue-Stieltjes Measure.- 15 Reconstruction of a Nondecreasing Function for a Given Lebesgue-Stieltjes Measure.- 16 Charges and Their Properties.- 17 Relationship between Functions of Bounded Variation and Charges.- 2 Measurable Functions.- 1 Measurable Spaces. Measure Spaces. Measurable Functions.- 2 Properties of Measurable Functions.- 3 Equivalence of Functions.- 4 Sequences of Measurable Functions.- 5 Simple Functions. Approximation of Measurable Functions by Simple Functions. The Luzin Theorem.- 3 Theory of Integration.- 1 Integration of Simple Functions.- 2 Integration of Measurable Bounded Functions.- 3 Relationship Between the Concepts of Riemann and Lebesgue Integrals.- 4 Integration of Nonnegative Unbounded Functions.- 5 Integration of Unbounded Functions with Alternating Sign.- 6 Limit Transition under the Sign of the Lebesgue Integral.- 7 Integration over a Set of Infinite Measure.- 8 Summability and Improper Riemann Integrals.- 9 Integration of Complex-Valued Functions.- 10 Integrals over Charges.- 11 Lebesgue-Stieltjes Integral and Its Relation to the Riemann-Stieltjes Integral.- 12 The Lebesgue Integral and the Theory of Series.- 4 Measures in the Products of Spaces. Fubini Theorem.- 1 Direct Product of Measurable Spaces. Sections of Sets and Functions.- 2 Product of Measures.- 3 The Fubini Theorem.- 4 Products of Finitely Many Measures.- 5 Absolute Continuity and Singularity of Measures, Charges, and Functions. Radon-Nikodym Theorem. Change of Variables in the Lebesgue Integral.- 1 Absolutely Continuous Measures and Charges.- 2 Radon-Nikodym Theorem.- 3 Radon-Nikodym Derivative. Change of Variables in the Lebesgue Integral.- 4 Mappings of Measure Spaces. Change of Variables in the Lebesgue Integral. (Another Approach).- 5 Singularity of Measures and Charges. Lebesgue Decomposition.- 6 Absolutely Continuous Functions. Basic Properties.- 7 Relationship Between Absolutely Continuous Functions and Charges.- 8 Newton-Leibniz Formula. Singular Functions. Lebesgue Decomposition of a Function of Bounded Variation.- 6 Linear Normed Spaces and Hilbert Spaces.- 1 Topological Spaces.- 2 Linear Topological Spaces.- 3 Linear Normed and Banach Spaces.- 4 Completion of Linear Normed Spaces.- 5 Pre-Hilbert and Hilbert Spaces.- 6 Quasiscalar Product and Seminorms.- 7 Examples of Banach and Hilbert Spaces.- 8 Spaces of Summable Functions. Spaces Lp.- 7 Linear Continuous Functional and Dual Spaces.- 1 Theorem on an Almost Orthogonal Vector. Finite Dimensional Spaces.- 2 Linear Continuous Functional and Their Simple Properties. Dual Space.- 3 Extension of Linear Continuous Functionals.- 4 Corollaries of the Hahn-Banach Theorem.- 5 General Form of Linear Continuous Functionals in Some Banach Spaces.- 6 Embedding of a Linear Normed Space in the Second Dual Space. Reflexive Spaces.- 7 Banach-Steinhaus Theorem. Weak Convergence.- 8 Tikhonov Product. Weak Topology in the Dual Space.- 9 Orthogonality and Orthogonal Projections in Hilbert Spaces. General Form of a Linear Continuous Functional.- 10 Orthonormal Systems of Vectors and Orthonormal Bases in Hilbert Spaces.- 8 Linear Continuous Operators.- 1 Linear Operators in Normed Spaces.- 2 The Space of Linear Continuous Operators.- 3 Product of Operators. The Inverse Operator.- 4 The Adjoint Operator.- 5 Linear Operators in Hilbert Spaces.- 6 Matrix Representation of Operators in Hilbert Spaces.- 7 Hilbert-Schmidt Operators.- 8 Spectrum and Resolvent of a Linear Continuous Operator.- 9 Compact Operators. Equations with Compact Operators.- 1 Definition and Properties of Compact Operators.- 2 Riesz-Schauder Theory of Solvability of Equations with Compact Operators.- 3 Solvability of Fredholm Integral Equations.- 4 Spectrum of a Compact Operator.- 5 Spectral Radius of an Operator.- 6 Solution of Integral Equations of the Second Kind by the Method of Successive Approximations.- 10 Spectral Decomposition of Compact Selfadjoint Operators. Analytic Functions of Operators.- 1 Spectral Decomposition of a Compact Selfadjoint Operator.- 2 Integral Operators with Hermitian Kernels.- 3 The Bochner Integral.- 4 Analytic Functions of Operators.- 11 Elements of the Theory of Generalized Functions.- 1 Test and Generalized Functions.- 2 Operations with Generalized Functions.- 3 Tempered Generalized Functions. Fourier Transformation.- Bibliographical Notes.- References.