Cantitate/Preț
Produs

Fusion Methods for Unsupervised Learning Ensembles: Studies in Computational Intelligence, cartea 322

Autor Bruno Baruque
en Limba Engleză Paperback – 11 oct 2014
The application of a “committee of experts” or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62040 lei  43-57 zile
  Springer Berlin, Heidelberg – 11 oct 2014 62040 lei  43-57 zile
Hardback (1) 62650 lei  43-57 zile
  Springer Berlin, Heidelberg – 23 noi 2010 62650 lei  43-57 zile

Din seria Studies in Computational Intelligence

Preț: 62040 lei

Preț vechi: 77551 lei
-20% Nou

Puncte Express: 931

Preț estimativ în valută:
11874 12376$ 9885£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642423284
ISBN-10: 3642423280
Pagini: 160
Ilustrații: XVII, 141 p.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 Modelling Human Learning: Artificial Neural Networks.- 3 The Committee of Experts Approach: Ensemble Learning.- 4 Use of Ensembles for Outlier Overcoming.- 5 Ensembles of Topology Preserving Maps.- 6 A Novel Fusion Algorithm for Topology-Preserving Maps.-7 Conclusions.

Textul de pe ultima copertă

The application of a “committee of experts” or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topologypreserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.

Caracteristici

Recent research in Fusion Methods for Unsupervised Learning Ensembles Examines the potential of the ensemble meta-algorithm Written by leading experts in the field