General Theory of Irregular Curves: Mathematics and its Applications, cartea 29
Autor V.V. Alexandrov, Yu. G. Reshetnyaken Limba Engleză Hardback – 31 oct 1989
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 388.34 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 26 sep 2011 | 388.34 lei 6-8 săpt. | |
Hardback (1) | 397.01 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 1989 | 397.01 lei 6-8 săpt. |
Din seria Mathematics and its Applications
- Preț: 483.29 lei
- Preț: 367.83 lei
- Preț: 381.89 lei
- Preț: 435.17 lei
- 23% Preț: 321.52 lei
- 20% Preț: 371.26 lei
- Preț: 432.50 lei
- 22% Preț: 321.53 lei
- Preț: 435.39 lei
- 15% Preț: 459.13 lei
- Preț: 427.71 lei
- 12% Preț: 351.91 lei
- 22% Preț: 333.11 lei
- Preț: 356.63 lei
- 18% Preț: 1125.42 lei
- Preț: 392.97 lei
- 15% Preț: 651.67 lei
- 15% Preț: 642.83 lei
- 15% Preț: 647.59 lei
- 15% Preț: 647.59 lei
- Preț: 389.49 lei
- Preț: 394.12 lei
- 15% Preț: 652.17 lei
- 20% Preț: 651.57 lei
- 15% Preț: 650.19 lei
- Preț: 382.36 lei
- Preț: 392.97 lei
- 15% Preț: 657.39 lei
- 15% Preț: 658.37 lei
- Preț: 394.29 lei
Preț: 397.01 lei
Nou
Puncte Express: 596
Preț estimativ în valută:
75.99€ • 78.31$ • 64.15£
75.99€ • 78.31$ • 64.15£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027728111
ISBN-10: 9027728119
Pagini: 298
Ilustrații: X, 288 p.
Dimensiuni: 210 x 297 x 22 mm
Greutate: 0.63 kg
Ediția:1989
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027728119
Pagini: 298
Ilustrații: X, 288 p.
Dimensiuni: 210 x 297 x 22 mm
Greutate: 0.63 kg
Ediția:1989
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I: General Notion of a Curve.- 1.1. Definition of a Curve.- 1.2. Normal Parametrization of a Curve.- 1.3. Chains on a Curve and the Notion of an Inscribed Polygonal Line.- 1.4. Distance Between Curves and Curve Convergence.- 1.5. On a Non-Parametric Definition of the Notion of a Curve.- II: Length of a Curve.- 2.1. Definition of a Curve Length and its Basic Properties.- 2.2. Rectifiable Curves in Euclidean Spaces.- 2.3. Rectifiable Curves in Lipshitz Manifolds.- III: Tangent and the Class of One-Sidedly Smooth Curves.- 3.1. Definition and Basic Properties of One-Sidedly Smooth Curves.- 3.2. Projection Criterion of the Existence of a Tangent in the Strong Sense.- 3.3. Characterizing One-Sidedly Smooth Curves with Contingencies.- 3.4. One-Sidedly Smooth Functions.- 3.5. Notion of c-Correspondence. Indicatrix of Tangents of a Curve.- 3.6. One-Sidedly Smooth Curves in Differentiable Manifolds.- IV: Some Facts of Integral Geometry.- 4.1. Manifold Gnk of k-Dimensional Directions in Vn.- 4.2. Imbedding of Gnk into a Euclidean Space.- 4.3. Existence of Invariant Measure of Gnk.- 4.4. Invariant Measure in Gnk and Integral. Uniqueness of an Invariant Measure.- 4.5. Some Relations for Integrals Relative to the Invariant Measure in Gnk.- 4.6. Some Specific Subsets of Gnk.- 4.7. Length of a Spherical Curve as an Integral of the Function Equal to the Number of Intersection Points.- 4.8. Length of a Curve as an Integral of Lengths of its Projections.- 4.9. Generalization of Theorems on the Mean Number of the Points of Intersection and Other Problems.- V: Turn or Integral Curvature of a Curve.- 5.1. Definition of a Turn. Basic Properties of Curves of a Finite Turn.- 5.2. Definition of a Turn of a Curve by Contingencies.- 5.3. Turn of a Regular Curve.- 5.4. Analytical Criterion of Finiteness of a Curve Turn.- 5.5. Basic Integra-Geometrical Theorem on a Curve Turn.- 5.6. Some Estimates and Theorems on a Limiting Transition.- 5.7. Turn of a Curve as a Limit of the Sum of Angles Between the Secants.- 5.8. Exact Estimates of the Length of a Curve.- 5.9. Convergence with a Turn.- 5.10 Turn of a Plane Curve.- VI: Theory of a Turn on an n-Dimensional Sphere.- 6.1. Auxiliary Results.- 6.2. Integro-Geometrical Theorem on Angles and its Corrolaries.- 6.3. Definition and Basic Properties of Spherical Curves of a Finite Geodesic Turn.- 6.4. Definition of a Geodesic Turn by Means of Tangents.- 6.5. Curves on a Two-Dimensional Sphere.- VII: Osculating Planes and Class of Curves with an Osculating Plane in the Strong Sense.- 7.1. Notion of an Osculating Plane.- 7.2. Osculating Plane of a Plane Curve.- 7.3. Properties of Curves with an Osculating Plane in the Strong Sense.- VIII: Torsion of a Curve in a Three-Dimensional Euclidean Space.- 8.1. Torsion of a Plane Curve.- 8.2. Curves of a Finite Complete Torsion.- 8.3. Complete Two-Dimensional Indicatrix of a Curve of a Finite Complete Torsion.- 8.4. Continuity and Additivity of Absolute Torsion.- 8.5. Definition of an Absolute Torsion Through Triple Chains and Paratingences.- 8.6. Right-Hand and Left-Hand Indices of a Point. Complete Torsion of a Curve.- IX: Frenet Formulas and Theorems on Natural Parametrization.- 9.1. Frenet Formulas.- 9.2. Theorems on Natural Parametrization.- X: Some Additional Remarks.- References.