Cantitate/Preț
Produs

Genetic Algorithms + Data Structures = Evolution Programs

Autor Zbigniew Michalewicz
en Limba Engleză Paperback – 22 sep 2011
Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science.
The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 69350 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 22 sep 2011 69350 lei  6-8 săpt.
Hardback (1) 97735 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 21 mar 1996 97735 lei  6-8 săpt.

Preț: 69350 lei

Preț vechi: 86688 lei
-20% Nou

Puncte Express: 1040

Preț estimativ în valută:
13276 13800$ 11008£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642082337
ISBN-10: 3642082335
Pagini: 408
Ilustrații: XX, 387 p. 14 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.57 kg
Ediția:3rd ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 GAs: What Are They?.- 2 GAs: How Do They Work?.- 3 GAs: Why Do They Work?.- 4 GAs: Selected Topics.- 5 Binary or Float?.- 6 Fine Local Tuning.- 7 Handling Constraints.- 8 Evolution Strategies and Other Methods.- 9 The Transportation Problem.- 10 The Traveling Salesman Problem.- 11 Evolution Programs for Various Discrete Problems.- 12 Machine Learning.- 13 Evolutionary Programming and Genetic Programming.- 14 A Hierarchy of Evolution Programs.- 15 Evolution Programs and Heuristics.- 16 Conclusions.- Appendix A.- Appendix B.- Appendix C.- Appendix D.- References.

Caracteristici

Classic introduction to the evolution programming techniques Many figures and tables The systematic approach makes the book an appropriate text for a senior undergraduate/graduate one semester course