Genome Engineering for Crop Improvement: Concepts and Strategies in Plant Sciences
Editat de Bidyut Kumar Sarmah, Basanta Kumar Borahen Limba Engleză Paperback – 19 apr 2022
The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivityand more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1065.27 lei 6-8 săpt. | |
Springer International Publishing – 19 apr 2022 | 1065.27 lei 6-8 săpt. | |
Hardback (1) | 1071.65 lei 3-5 săpt. | |
Springer International Publishing – 19 apr 2021 | 1071.65 lei 3-5 săpt. |
Preț: 1065.27 lei
Preț vechi: 1299.10 lei
-18% Nou
Puncte Express: 1598
Preț estimativ în valută:
203.88€ • 215.08$ • 169.90£
203.88€ • 215.08$ • 169.90£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030633745
ISBN-10: 3030633748
Ilustrații: XVII, 264 p. 25 illus., 24 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.4 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Concepts and Strategies in Plant Sciences
Locul publicării:Cham, Switzerland
ISBN-10: 3030633748
Ilustrații: XVII, 264 p. 25 illus., 24 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.4 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Concepts and Strategies in Plant Sciences
Locul publicării:Cham, Switzerland
Cuprins
Source-Sink relationships and its effect on plant productivity: manipulation of primary carbon and starch metabolism.- Transgenic Approaches to Develop Virus Resistance in Rice.- Virus free improved food in the era of bacterial immunity.- Host-induced gene silencing (HIGS): An emerging strategy for the control of fungal plant diseases.- Genetic Engineering for Biotic Stress Management in Rice.- Genome improvement for rust disease resistance in wheat.- Novel technologies for transgenic management for plant virus resistance.- Cisgenesis: Engineering plant genomes by harnessing compatible gene pools.- Improving biotic and abiotic stress tolerance in plants: A CRISPR-Cas approach.- RNA interference (RNAi) in Functional Genomics of Wheat.
Notă biografică
Bidyut Kumar Sarmah, Ph.D:
Presently, he is an ICAR-National Professor (Norman Borlaug Chair) and the Director of the DBT-North East Centre for Agricultural Biotechnology in Assam Agricultural University, Jorhat, India. His major research contribution is the development of genetically modified chickpeas for resistance against two devastating insect pests (stored grain pests and pod borers) in collaboration with CSIRO Agriculture and Food, Canberra. Professor Sarmah obtained his PhD from IARI, New Delhi and worked as postdoctoral researchers / visiting scientist in WSU, USA; CSIRO, Australia; FMI, Switzerland and AUA, Greece.
Basanta Kumar Borah, Ph.D.
Presently, he is working as an Assistant Professor in Assam Agricultural University, Jorhat, India, and is primarily involved in teachings in undergraduate and postgraduate courses in Agricultural Biotechnology. He also has been involved in research areas on molecular virology, medicinal and aromatic plants. He has been an active partner of Erasmus Mundus Action-2 programme of European Union, called BRAVE and Erasmus plus programme, called Adaptnet with Professor Sarmah. Previously, he worked as postdoctoral researcher in the University of Basel, Switzerland, from 2009 to 2011 with Prof. Thomas Hohn and Dr. Mikhail M Pooggin.
.
Presently, he is an ICAR-National Professor (Norman Borlaug Chair) and the Director of the DBT-North East Centre for Agricultural Biotechnology in Assam Agricultural University, Jorhat, India. His major research contribution is the development of genetically modified chickpeas for resistance against two devastating insect pests (stored grain pests and pod borers) in collaboration with CSIRO Agriculture and Food, Canberra. Professor Sarmah obtained his PhD from IARI, New Delhi and worked as postdoctoral researchers / visiting scientist in WSU, USA; CSIRO, Australia; FMI, Switzerland and AUA, Greece.
Basanta Kumar Borah, Ph.D.
Presently, he is working as an Assistant Professor in Assam Agricultural University, Jorhat, India, and is primarily involved in teachings in undergraduate and postgraduate courses in Agricultural Biotechnology. He also has been involved in research areas on molecular virology, medicinal and aromatic plants. He has been an active partner of Erasmus Mundus Action-2 programme of European Union, called BRAVE and Erasmus plus programme, called Adaptnet with Professor Sarmah. Previously, he worked as postdoctoral researcher in the University of Basel, Switzerland, from 2009 to 2011 with Prof. Thomas Hohn and Dr. Mikhail M Pooggin.
.
Textul de pe ultima copertă
This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement.
The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivityand more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.
The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivityand more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.
Caracteristici
The book covers genome modification technologies available for crop improvement and review on such technologies for further improvement Examples and case studies from authors of different chapters having long term-involvement in their areas of interests will be discussed Efficiency of modern gene technologies and genome editing technologies for improvement of crop planst especially for the problems encountered by the crop plants that diminish the yield Book will specifically cover topics such as transgenics, cisgenics RNA-based resistance strategies, virus resistance etc