Cantitate/Preț
Produs

Geometry and Topology of Configuration Spaces: Springer Monographs in Mathematics

Autor Edward R. Fadell, Sufian Y. Husseini
en Limba Engleză Paperback – 9 oct 2012

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64218 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 9 oct 2012 64218 lei  6-8 săpt.
Hardback (1) 64773 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 27 noi 2000 64773 lei  6-8 săpt.

Din seria Springer Monographs in Mathematics

Preț: 64218 lei

Preț vechi: 75551 lei
-15% Nou

Puncte Express: 963

Preț estimativ în valută:
12294 12650$ 10363£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642630774
ISBN-10: 3642630774
Pagini: 332
Ilustrații: XVI, 313 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. The Homotopy Theory of Configuration Spaces.- I. Basic Fibrations.- II. Configuration Space of ?n+1, n < 1.- III. Configuration Spaces of Sn+1, n < 1.- IV. The Two Dimensional Case.- II. Homology and Cohomology of $$(\mathbb{F}_k (M)$$.- V. The Algebra $$H^* (\mathbb{F}_k (M);\mathbb{Z})$$.- VI. Cellular Models.- VII. Cellular Chain Models.- III. Homology and Cohomology of Loop Spaces.- VIII. The Algebra $$H_* (\Omega \mathbb{F}_k (M)))$$.- IX. RPT-Constructions.- X. Cellular Chain Algebra Models.- XI. The Serre Spectral Sequence.- XII. Computation of H*(?(M)).- XIII. ?-Category and Ends.- XIV. Problems of k-body Type.- References.

Textul de pe ultima copertă

The configuration space of a manifold provides the appropriate setting for problems not only in topology but also in other areas such as nonlinear analysis and algebra. With applications in mind, the aim of this monograph is to provide a coherent and thorough treatment of the configuration spaces of Eulidean spaces and spheres which makes the subject accessible to researchers and graduate students with a minimal background in classical homotopy theory and algebraic topology. The treatment regards the homotopy relations of Yang-Baxter type as being fundamental. It also includes a novel and geometric presentation of the classical pure braid group; the cellular structure of these configuration spaces which leads to a cellular model for the associated based and free loop spaces; the homology and cohomology of based and free loop spaces; and an illustration of how to apply the latter to the study of Hamiltonian systems of k-body type.

Caracteristici

Self-contained treatment of the topology of configuration spaces Distinctive feature: it is more geometric than is traditional More accessible account by the present authors as well as a consolidation of many results Includes supplementary material: sn.pub/extras