Cantitate/Preț
Produs

Global Aspects of Classical Integrable Systems

Autor Richard H. Cushman, Larry M. Bates
en Limba Engleză Hardback – 10 iun 2015
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38607 lei  6-8 săpt.
  Birkhäuser Basel – 5 oct 2012 38607 lei  6-8 săpt.
Hardback (1) 71595 lei  6-8 săpt.
  Springer – 10 iun 2015 71595 lei  6-8 săpt.

Preț: 71595 lei

Preț vechi: 87312 lei
-18% Nou

Puncte Express: 1074

Preț estimativ în valută:
13701 14368$ 11425£

Carte tipărită la comandă

Livrare economică 07-21 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783034809177
ISBN-10: 3034809174
Pagini: 500
Ilustrații: XVIII, 477 p. 86 illus., 69 illus. in color.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.87 kg
Ediția:2nd ed. 2015
Editura: Springer
Colecția Birkhäuser
Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

Foreword.- Introduction.- The mathematical pendulum.- Exercises.- Part I. Examples.- I. The harmonic oscillator.- 1. Hamilton’s equations and S1 symmetry.- 2. S1 energy momentum mapping.- 3. U(2) momentum mapping.- 4. The Hopf fibration.- 5. Invariant theory and reduction.- 6. Exercises.- II. Geodesics on S3.- 1. The geodesic and Delaunay vector fields.- 2.The SO(4) momentum mapping.- 3. The Kepler problem.- 3.1 The Kepler vector field.- 3.2 The so(4) momentum map.- 3.3 Kepler’s equation.- 4 Regularization of the Kepler vector field.- 4.1 Moser’s regularization.-  4.1 Ligon-Schaaf regularization.-  5. Exercises.-  III. The Euler top.-1. Facts about SO(3).- 1.1 The standard model.-1.2 The exponential map.- 1.3 The solid ball model.- 1.4 The sphere bundle model.- 2. Left invariant geodesics.- 2.1 Euler-Arnol’d equations on SO(3) ⇥ R3.-  2.2 Euler-Arnol’d equations on T1 S2 ⇥ R3.- 3. Symmetry and reduction.- 3.1 SO(3) symmetry.- 3.2 Construction of the reduced phase space.- 3.3 Geometry of the reduction map.- 3.4 Euler’s equations.-  4. Qualitative behavior of the reduced system.- 5. Analysis of the energy momentum map.- 6. Integration of the Euler-Arnol’d  equations.- 7. The rotation number.-  7.1 An analytic formula.- 7.2 Poinsot’s construction.-8. A twisting phenomenon.- 9. Exercises.-   IV. The spherical pendulum.- 1. Liouville integrability.- 2. Reduction of the S1 symmetry.-2.1 The orbit space T S2 /S1.-  2.2 The singular reduced space.- 2.3 Differential  structure on Pj ).- 2.4 Poisson brackets on C• (Pj ).-  2.5 Dynamics  on the reduced space Pj.-  3. The energy momentum mapping.- 3.1 Critical points of EM.-  3.2 Critical values of EM.-  3.3 Level sets of the reduced Hamiltonian  H j |Pj.-  3.4 Level sets of the energy momentum mapping EM.- 4. First return time and rotation number.-  4.1 Definition of first return time and rotation number.-4.2 Analytic properties of the rotation number.-4.3 Analytic properties of first return time.-5. Monodromy.-  5.1 Definition of monodromy.-  5.2 Monodromy of the bundle of period lattices.-6. Exercises.-  V. The Lagrange top.-1.The basic model.- 2. Liouville integrability.- 3. Reduction of the right S1 action.- 3.1 Reduction to the Euler-Poisson equations.-3.2 The magnetic spherical pendulum.-  4. Reduction of the left S1 action.-4.1 Induced action on P a.- 4.2 The orbit space (J a )  1 (b)/S1.-  4.3 Some differential  spaces.- 4.4 Poisson structure on C•(P a ).- 5. The Euler-Poisson equations.- 5.1 The twice reduced system.- 5.2 The energy momentum mapping.- 5.3 Motion of the tip of the figure axis.-6. The energy momentum mapping.-  6.1 Topology of EM   1 (h, a, b) and H  1 (h).-  6.2 The discriminant locus.- 6.3 The period lattice.- 6.4 Monodromy.- 7. The Hamiltonian  Hopf bifurcation.- 7.1 The linear case.- 7.2 The nonlinear case.- 8. Exercises.-  Part II. Theory.-VI. Fundamental concepts.-1. Symplectic linear algebra.- 2. Symplectic manifolds.- 3. Hamilton’s equations.- 4. Poisson algebras and manifolds.-  5. Exercises.-  VII. Systems with symmetry.-1. Smooth group actions.- 2. Orbit spaces.- 2.1 Orbit space of a proper action.-2.2 Orbit space of a proper free action.- 3. Differential  spaces.- 3.1 Differential  structure.- 3.2 An orbit space as a differential  space.- 3.3 Subcartesian spaces.- 3.4 Stratification of an orbit space by orbit types.- 3.5 Minimality of S.- 4. Vector fields on a differential  space.- 4.1 Definition of a vector field.- 4.2 Vector field on a stratified differential  space.- 4.3 Vector fields on an orbit space.- 5. Momentum mappings.-5.1 General properties.- 5.2 Normal form.- 6. Regular reduction.- 6.1 The standard approach.- 6.2 An alternative approach.- 7. Singular reduction.- 7.1 Singular  reduced space and dynamics.- 7.2 Stratification of the singular reduced space.- 8. Exercises.- VIII. Ehresmann connections.-1. Basic properties.- 2. The Ehresmann theorems.- 3. Exercises.- IX. Action angle coordinates.- 1. Liouville integrable systems.- 2. Local action angle coordinates.- 3. Exercises.- X.Monodromy.-1. The period lattice bundle.-2. The geometric mondromy theorem.- 2.1 The singular fiber.- 2.2 Nearby singular fibers.- 2.3 Monodromy.- 3. The hyperbolic billiard.- 3.1 The basic model.- 3.2 Reduction of the S1 symmetry.- 3.3 Partial reconstruction.- 3.4 Full reconstruction.- 3.5 The first return time and rotation angle.-3.6 The action functions.- 4. Exercises.- XI. Morse theory.-1. Preliminaries.- 2. The Morse lemma.- 3. The Morse isotopy lemma.- 4. Exercises.- Notes.-Forward and Introduction.- Harmonic oscillator.- Geodesics on S3.- Euler top.- Spherical pendulum.- Lagrange top.- Fundamental concepts.- Systems with symmetry.- Ehresmann connections.- Action angle coordinates.- Monodromy.- Morse theory.-References.- Acknowledgments.-Index.

Textul de pe ultima copertă

This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

Caracteristici

This book gives a complete global geometric description of the motion of the two dimensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top
This book is necessary because the standard treatments are not complete
Main goal of this book is to understand the global geometric features of our model integrable systems
Includes supplementary material: sn.pub/extras

Recenzii

"Ideal for someone who needs a thorough global understanding of one of these systems [and] who would like to learn some of the tools and language of modern geometric mechanics. The exercises at the end of each chapter are excellent. The book could serve as a good supplementary text for a graduate course in geometric mechanics."
--SIAM Review