Global Aspects of Classical Integrable Systems
Autor Richard H. Cushman, Larry M. Batesen Limba Engleză Paperback – 5 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 389.39 lei 43-57 zile | |
Birkhäuser Basel – 5 oct 2012 | 389.39 lei 43-57 zile | |
Hardback (1) | 722.17 lei 43-57 zile | |
Springer – 10 iun 2015 | 722.17 lei 43-57 zile |
Preț: 389.39 lei
Nou
Puncte Express: 584
Preț estimativ în valută:
74.52€ • 77.41$ • 61.90£
74.52€ • 77.41$ • 61.90£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034898171
ISBN-10: 3034898177
Pagini: 456
Ilustrații: XVI, 435 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
ISBN-10: 3034898177
Pagini: 456
Ilustrații: XVI, 435 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
I. The harmonic oscillator.- 1. Hamilton’s equations and Sl symmetry.- 2. S1 energy momentum mapping.- 3. U(2) momentum mapping.- 4. The Hopf fibration.- 5. Invariant theory and reduction.- 6. Exercises.- II. Geodesics on S3.- 1. The geodesic and Delaunay vector fields.- 2. The SO(4) momentum mapping.- 3. The Kepler problem.- 4. Exercises.- III The Euler top.- 1. Facts about SO(3).- 2. Left invariant geodesics.- 3. Symmetry and reduction.- 4. Qualitative behavior of the reduced system.- 5. Analysis of the energy momentum map.- 6. Integration of the Euler-Arnol’d equations.- 7. The rotation number.- 8. A twisting phenomenon.- 9. Exercises.- IV. The spherical pendulum.- 1. Liouville integrability.- 2. Reduction of the Sl symmetry.- 3. The energy momentum mapping.- 4. Rotation number and first return time.- 5. Monodromy.- 6. Exercises.- V. The Lagrange top.- 1. The basic model.- 2. Liouville integrability.- 3. Reduction of the right Sl action.- 4. Reduction of the left S1 action.- 5. The Poisson structure.- 6. The Euler-Poisson equations.- 7. The energy momemtum mapping.- 8. The Hamiltonian Hopf bifurcation.- 9. Exercises.- Appendix A. Fundamental concepts.- 1. Symplectic linear algebra.- 2. Symplectic manifolds.- 3. Hamilton’s equations.- 4. Poisson algebras and manifolds.- 5. Exercises.- Appendix B. Systems with symmetry.- 1. Smooth group actions.- 2. Orbit spaces.- 2.1 Orbit space of a proper action.- 2.2 Orbit space of a free action.- 2.3 Orbit space of a locally free action.- 3. Momentum mappings.- 3.1 General properties.- 3.2 Normal form.- 4. Reduction: the regular case.- 5. Reduction: the singular case.- 6. Exercises.- Appendix C. Ehresmann connections.- 1. Basic properties.- 2. The Ehresmann theorems.- 3. Exercises.- Appendix D. Action angle coordinates.- 1.Local action angle coordinates.- 2. Monodromy.- 3. Exercises.- Appendix E. Basic Morse theory.- 1. Preliminaries.- 2. The Morse lemma.- 3. The Morse isotopy lemma.- 4. Exercises.- Notes.- References.- Acknowledgements.
Recenzii
"Ideal for someone who needs a thorough global understanding of one of these systems [and] who would like to learn some of the tools and language of modern geometric mechanics. The exercises at the end of each chapter are excellent. The book could serve as a good supplementary text for a graduate course in geometric mechanics."
--SIAM Review
--SIAM Review
Textul de pe ultima copertă
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
Caracteristici
This book gives a complete global geometric description of the motion of the two dimensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top
This book is necessary because the standard treatments are not complete
Main goal of this book is to understand the global geometric features of our model integrable systems
Includes supplementary material: sn.pub/extras
This book is necessary because the standard treatments are not complete
Main goal of this book is to understand the global geometric features of our model integrable systems
Includes supplementary material: sn.pub/extras