Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems: Progress in Mathematical Physics, cartea 15
Autor Andrei N. Leznov, Mikhail V. Savelieven Limba Engleză Hardback – 22 apr 1992
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 368.91 lei 6-8 săpt. | |
Birkhäuser Basel – 29 oct 2012 | 368.91 lei 6-8 săpt. | |
Hardback (1) | 375.82 lei 6-8 săpt. | |
Birkhäuser Basel – 22 apr 1992 | 375.82 lei 6-8 săpt. |
Din seria Progress in Mathematical Physics
- Preț: 365.06 lei
- Preț: 357.42 lei
- Preț: 377.99 lei
- Preț: 374.28 lei
- Preț: 370.50 lei
- Preț: 375.82 lei
- 20% Preț: 454.97 lei
- Preț: 378.35 lei
- Preț: 370.50 lei
- Preț: 361.96 lei
- 18% Preț: 1174.22 lei
- 18% Preț: 1059.72 lei
- 15% Preț: 615.56 lei
- 15% Preț: 544.78 lei
- 18% Preț: 744.65 lei
- 15% Preț: 621.48 lei
- Preț: 374.54 lei
- Preț: 361.90 lei
- 15% Preț: 614.34 lei
- 15% Preț: 614.82 lei
- 15% Preț: 611.55 lei
- Preț: 371.64 lei
- 15% Preț: 564.06 lei
- Preț: 387.41 lei
- 15% Preț: 653.71 lei
- 15% Preț: 667.47 lei
- 15% Preț: 619.90 lei
- 15% Preț: 612.19 lei
- Preț: 377.46 lei
- Preț: 381.63 lei
- 15% Preț: 557.49 lei
- Preț: 368.35 lei
- 18% Preț: 740.33 lei
- Preț: 386.75 lei
Preț: 375.82 lei
Nou
Puncte Express: 564
Preț estimativ în valută:
71.95€ • 78.22$ • 60.22£
71.95€ • 78.22$ • 60.22£
Carte tipărită la comandă
Livrare economică 14-28 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764326159
ISBN-10: 3764326158
Pagini: 290
Ilustrații: XVII, 292 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.62 kg
Ediția:1992
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematical Physics
Locul publicării:Basel, Switzerland
ISBN-10: 3764326158
Pagini: 290
Ilustrații: XVII, 292 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.62 kg
Ediția:1992
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematical Physics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Background of the theory of Lie algebras and Lie groups and their representations.- § 1.1 Lie algebras and Lie groups.- § 1.2 ?-graded Lie algebras and their classification.- § 1.3 sl(2)-subalgebras of Lie algebras.- § 1.4 The structure of representations.- § 1.5 A parametrization of simple Lie groups.- § 1.6 The highest vectors of irreducible representations of semisimple Lie groups.- § 1.7 Superalgebras and superspaces.- Representations of complex semisimple Lie groups and their real forms.- § 2.1 Infinitesimal shift operators on semisimple Lie groups.- § 2.2 Casimir operators and the spectrum of their eigenvalues.- § 2.3 Representations of semisimple Lie groups.- § 2.4 Intertwining operators and the invariant bilinear form.- § 2.5 Harmonic analysis on semisimple Lie groups.- § 2.6 Whittaker vectors.- A general method of integrating two-dimensional nonlinear systems.- § 3.1 General method.- § 3.2 Systems generated by the local part of an arbitrary graded Lie algebra.- § 3.3 Generalization for systems with fermionic fields.- § 3.4 Lax-type representation as a realization of self-duality of cylindrically-symmetric gauge fields.- Integration of nonlinear dynamical systems associated with finite-dimensional Lie algebras.- § 4.1 The generalized (finite nonperiodic) Toda lattice.- § 4.2 Complete integration of the two-dimensionalized system of Lotka-Volterra-type equations (difference KdV) as the Bäcklund transformation of the Toda lattice.- § 4.3 String-type systems (nonabelian versions of the Toda system).- § 4.4 The case of a generic Lie algebra.- § 4.5 Supersymmetric equations.- § 4.6 The formulation of the one-dimensional system (3.2.13) based on the notion of functional algebra.- Internal symmetries of integrable dynamical systems.- § 5.1Lie-Bäcklund transformations. The characteristic algebra and defining equations of exponential systems.- § 5.2 Systems of type (3.2.8), their characteristic algebra and local integrals.- § 5.3 A complete description of Lie-Bäcklund algebras for the diagonal exponential systems of rank 2.- § 5.4 The Lax-type representation of systems (3.2.8) and explicit solution of the corresponding initial value (Cauchy) problem.- § 5.5 The Bäcklund transformation of the exactly integrable systems as a corollary of a contraction of the algebra of their internal symmetry.- § 5.6 Application of the methods of perturbation theory in the search for explicit solutions of exactly integrable systems (the canonical formalism).- § 5.7 Perturbation theory in the Yang-Feldmann formalism.- § 5.8 Methods of perturbation theory in the one-dimensional problem.- § 5.9 Integration of nonlinear systems associated with infinite-dimensional Lie algebras.- Scalar Lax-pairs and soliton solutions of the generalized periodic Toda lattice.- § 6.1 A group-theoretical meaning of the spectral parameter and the equations for the scalar LA-pair.- § 6.2 Soliton solutions of the sine-Gordon equation.- § 6.3 Generalized Bargmann potentials.- § 6.4 Soliton solutions for the vector representation of Ar.- Exactly integrable quantum dynamical systems.- § 7.1 The Hamiltonian (canonical) formalism and the Yang-Feldmann method.- § 7.2 Basics from perturbation theory.- § 7.3 One-dimensional generalized Toda lattice with fixed end-points.- § 7.4 The Liouville equation.- § 7.5 Multicomponent 2-dimensional models. 1.- § 7.6 Multicomponent 2-dimensional models. 2.- Afterword.