Hassler Whitney Collected Papers Volume I: Vol.1: Contemporary Mathematicians
Autor James Eelles, Domingo Toledoen Limba Engleză Paperback – 25 feb 2012
Din seria Contemporary Mathematicians
- 15% Preț: 686.04 lei
- 18% Preț: 1111.22 lei
- 18% Preț: 1847.84 lei
- 15% Preț: 660.18 lei
- Preț: 434.72 lei
- 18% Preț: 1408.89 lei
- 18% Preț: 1260.20 lei
- Preț: 405.06 lei
- 18% Preț: 1821.77 lei
- 18% Preț: 2118.87 lei
- 15% Preț: 677.02 lei
- 15% Preț: 669.66 lei
- 15% Preț: 651.19 lei
- 18% Preț: 1244.59 lei
- Preț: 401.79 lei
- Preț: 403.91 lei
- 18% Preț: 992.96 lei
- 18% Preț: 984.13 lei
- 15% Preț: 669.85 lei
- 18% Preț: 1841.20 lei
- 15% Preț: 607.01 lei
- 18% Preț: 978.46 lei
- Preț: 412.57 lei
- Preț: 447.99 lei
- 18% Preț: 1244.59 lei
- 15% Preț: 681.92 lei
- Preț: 406.25 lei
- 18% Preț: 3033.85 lei
Preț: 606.69 lei
Preț vechi: 713.75 lei
-15% Nou
Puncte Express: 910
Preț estimativ în valută:
116.09€ • 121.21$ • 96.08£
116.09€ • 121.21$ • 96.08£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461277408
ISBN-10: 146127740X
Pagini: 612
Ilustrații: XIV, 592 p.
Dimensiuni: 178 x 254 x 32 mm
Greutate: 1.05 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
ISBN-10: 146127740X
Pagini: 612
Ilustrații: XIV, 592 p.
Dimensiuni: 178 x 254 x 32 mm
Greutate: 1.05 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
— Volume 1.- [82] Moscow 1935: Topology Moving Toward America.- 1 Graphs and Combinatorics.- [3] A theorem on graphs, Annals of Math. (2) v. 32, 1931,378–390.- [5] Non-separable and planar graphs, AMS Transac. v. 34, 1932, 339–362.- [6] Congruent graphs and the connectivity of graphs, Am. Jour. Math. v. 54, 1932, 150–168.- [10] The coloring of graphs, Annals of Math., (2) v. 33, 1932, 688–718.- [12] A set of topological invariants for graphs, Am. Jour. Math., v. 55, 1933, 231–235.- [13] On the classification of graphs, Am. Jour. Math., v. 55, 1933, 236–244.- [14] 2-Isomorphic graphs, Am. Jour. Math., v. 55, 1933, 245–254.- [17] Planar graphs, Fundamenta Math., V. 21, 1933, 73–84.- [23] On the abstract properties of linear dependence, Am. Jour. Math., v. 57, 1935, 509–533.- [37] A numerical equivalent of the four color problem, Monatshefte fur Math, un Phys. 3, 1937-207–213.- [77] On reducibility in the four color problem, unpublished manuscript, 1971.- [78] (With W. T. Tutte) Kempe chains and the four colour problem, Utilitas Mathematica 2(1972), 241–281.- 2 Differentiable Functions and Singularities.- [18] Analytic extensions of differentiable functions defined in closed sets, AMS Transac., v. 36, 1934, 63–89.- [19] Derivatives, difference quotients and Taylor’s formula, AMS Bull., v. 40, 1934, 89–94.- [20] Differentiable functions defined in closed sets I, AMS Transac., v. 36, 1934, 369–387.- [21] Derivatives, difference quotients and Taylor’s formula II, Annals of Math. (2) v. 35, 1934, 476–481.- [22] Functions differentiable on the boundaries of regions, Annals of Math. (2) v. 35, 1934, 482–485.- [26] A function not constant on a connected set of critical points, Duke Math. J., v. 1, 1935, 514–517.- [27] Differentiablefunctions defined in arbitrary subsets of Euclidean space, AMS Transac., v. 40, 1936, 309–317.- [45] Differentiability of the remainder term in Taylor’s formula, Duke Math. J., 10, 1943, 153–158.- [46] Differentiable even functions, Duke Math. J., 10, 1943, 159–160.- [47] The general type of singularity of a set of 2n ? 1 smooth functions of n variables, Duke Math. J., 10, 1943, 161–172.- [49] On the extension of differentiable functions, AMS Bull., 50, 1944, 76–81.- [55] On ideals of differentiable functions, Am. Jour. Math. 70, 1948, 635–658.- [61] On totally differentiable and smooth functions, Pacific J. Math. 1, 1951, 143–159.- [63] On singularities of mappings of Euclidean spaces, I. Mappings of the plane into the plane, Annals of Math. (2)62, 1955, 374–410.- [64] On functions with bounded n-th differences, J. de Maths. Pures et Appl. 36, 1957, 67–95.- [67] Singularities of mappings of Euclidean spaces, Symposium Internacional de Topologia Algebraica, Mexico, 1956, 285–301, Mexico, La Universidad Nacional Autonoma, 1958.- [70] On bounded functions with bounded n-th differences, AMS Proc. 10, 1959, 480–481.- 3 Analytic Spaces.- [66] Elementary structure of real algebraic varieties, Annals of Math. (2) 66, 1957, 545–556.- [68] (With F. Bruhat) Quelques propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv. 33, 1959, 132–160.- [73] Local properties of analytic varieties, in: differential and combinatorial topology (Symposium in Honor of Marston Morse), Princeton, NJ, Princeton University Press, 1965, 205–244.- [74] Tangents to an analytic variety, Annals of Math (2) 81, 1965, 496–549.- Permissions.