The Dilworth Theorems: Selected Papers of Robert P. Dilworth: Contemporary Mathematicians
Autor Bogart, Kung, Freeseen Limba Engleză Paperback – 30 iul 2013
Din seria Contemporary Mathematicians
- 15% Preț: 672.16 lei
- 18% Preț: 1088.69 lei
- 18% Preț: 1810.31 lei
- 15% Preț: 646.82 lei
- Preț: 425.97 lei
- 18% Preț: 1380.30 lei
- 18% Preț: 1234.63 lei
- Preț: 396.91 lei
- 18% Preț: 1784.78 lei
- 18% Preț: 2075.81 lei
- 15% Preț: 663.33 lei
- 15% Preț: 656.12 lei
- 15% Preț: 638.02 lei
- 15% Preț: 594.42 lei
- 18% Preț: 1219.32 lei
- Preț: 393.73 lei
- Preț: 395.80 lei
- 18% Preț: 972.85 lei
- 18% Preț: 964.19 lei
- 15% Preț: 656.29 lei
- 18% Preț: 1803.80 lei
- 15% Preț: 594.74 lei
- 18% Preț: 958.63 lei
- Preț: 404.28 lei
- Preț: 438.98 lei
- 18% Preț: 1219.32 lei
- 15% Preț: 668.13 lei
- 18% Preț: 2972.19 lei
Preț: 398.08 lei
Nou
Puncte Express: 597
Preț estimativ în valută:
76.18€ • 79.14$ • 63.28£
76.18€ • 79.14$ • 63.28£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781489935601
ISBN-10: 1489935606
Pagini: 492
Ilustrații: XXVI, 465 p. 2 illus.
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.84 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
ISBN-10: 1489935606
Pagini: 492
Ilustrații: XXVI, 465 p. 2 illus.
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.84 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Chain Partitions in Ordered Sets.- A Decomposition Theorem for Partially Ordered Sets.- Some Combinatorial Problems on Partially Ordered Sets.- The Impact of the Chain Decomposition Theorem on Classical Combinatorics.- Dilworth’s Decomposition Theorem in the Infinite Case.- Effective Versions of the Chain Decomposition Theorem.- Complementation.- Lattices with Unique Complements.- On Complemented Lattices.- Uniquely Complemented Lattices.- On Orthomodular Lattices.- Decomposition Theory.- Lattices with Unique Irreducible Decompositions.- The Arithmetical Theory of Birkhoff Lattices.- Ideals in Birkhoff Lattices.- Decomposition Theory for Lattices without Chain Conditions.- Note on the Kurosch-Ore Theorem.- Structure and Decomposition Theory of Lattices.- Dilworth’s Work on Decompositions in Semimodular Lattices.- The Consequences of Dilworth’s Work on Lattices with Unique Irreducible Decompositions.- Exchange Properties for Reduced Decompositions in Modular Lattices.- The Impact of Dilworth’s Work on Semimodular Lattices on the Kurosch-Ore Theorem.- Modular and Distributive Lattices.- The Imbedding Problem for Modular Lattices.- Proof of a Conjecture on Finite Modular Lattices.- Distributivity in Lattices.- Aspects of distributivity.- The Role of Gluing Constructions in Modular Lattice Theory.- Dilworth’s Covering Theorem for Modular Lattices.- Geometric and Semimodular Lattices.- Dependence Relations in a Semi-Modular Lattice.- A Counterexample to the Generalization of Sperner’s Theorem.- Dilworth’s Completion, Submodular Functions, and Combinatorial Optimization.- Dilworth Truncations of Geometric Lattices.- The Sperner Property in Geometric and Partition Lattices.- Multiplicative Lattices.- Abstract Residuation over Lattices.- Residuated Lattices.-Non-Commutative Residuated Lattices.- Non-Commutative Arithmetic.- Abstract Commutative Ideal Theory.- Dilworth’s Early Papers on Residuated and Multiplicative Lattices.- Abstract Ideal Theory: Principals and Particulars.- Representation and Embedding Theorems for Noether Lattices and r-Lattices.- Miscellaneous Papers.- The Structure of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- A Generalized Cantor Theorem.- Generators of lattice varieties.- Lattice Congruences and Dilworth’s Decomposition of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- Cantor Theorems for Relations.- Ideal and Filter Constructions in Lattice Varieties.- Two Results from “Algebraic Theory of Lattices”.- Dilworth’s Proof of the Embedding Theorem.- On the Congruence Lattice of a Lattice.