The Dilworth Theorems: Selected Papers of Robert P. Dilworth: Contemporary Mathematicians
Autor Bogart, Kung, Freeseen Limba Engleză Paperback – 30 iul 2013
Din seria Contemporary Mathematicians
- 15% Preț: 686.04 lei
- 18% Preț: 1111.22 lei
- 18% Preț: 1847.84 lei
- 15% Preț: 660.18 lei
- Preț: 434.72 lei
- 18% Preț: 1408.89 lei
- 18% Preț: 1260.20 lei
- Preț: 405.06 lei
- 18% Preț: 1821.77 lei
- 18% Preț: 2118.87 lei
- 15% Preț: 677.02 lei
- 15% Preț: 669.66 lei
- 15% Preț: 651.19 lei
- 15% Preț: 606.69 lei
- 18% Preț: 1244.59 lei
- Preț: 401.79 lei
- Preț: 403.91 lei
- 18% Preț: 992.96 lei
- 18% Preț: 984.13 lei
- 15% Preț: 669.85 lei
- 18% Preț: 1841.20 lei
- 15% Preț: 607.01 lei
- 18% Preț: 978.46 lei
- Preț: 412.57 lei
- Preț: 447.99 lei
- 18% Preț: 1244.59 lei
- 15% Preț: 681.92 lei
- 18% Preț: 3033.85 lei
Preț: 406.25 lei
Nou
Puncte Express: 609
Preț estimativ în valută:
77.75€ • 80.21$ • 65.80£
77.75€ • 80.21$ • 65.80£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781489935601
ISBN-10: 1489935606
Pagini: 492
Ilustrații: XXVI, 465 p. 2 illus.
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.84 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
ISBN-10: 1489935606
Pagini: 492
Ilustrații: XXVI, 465 p. 2 illus.
Dimensiuni: 178 x 254 x 26 mm
Greutate: 0.84 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Chain Partitions in Ordered Sets.- A Decomposition Theorem for Partially Ordered Sets.- Some Combinatorial Problems on Partially Ordered Sets.- The Impact of the Chain Decomposition Theorem on Classical Combinatorics.- Dilworth’s Decomposition Theorem in the Infinite Case.- Effective Versions of the Chain Decomposition Theorem.- Complementation.- Lattices with Unique Complements.- On Complemented Lattices.- Uniquely Complemented Lattices.- On Orthomodular Lattices.- Decomposition Theory.- Lattices with Unique Irreducible Decompositions.- The Arithmetical Theory of Birkhoff Lattices.- Ideals in Birkhoff Lattices.- Decomposition Theory for Lattices without Chain Conditions.- Note on the Kurosch-Ore Theorem.- Structure and Decomposition Theory of Lattices.- Dilworth’s Work on Decompositions in Semimodular Lattices.- The Consequences of Dilworth’s Work on Lattices with Unique Irreducible Decompositions.- Exchange Properties for Reduced Decompositions in Modular Lattices.- The Impact of Dilworth’s Work on Semimodular Lattices on the Kurosch-Ore Theorem.- Modular and Distributive Lattices.- The Imbedding Problem for Modular Lattices.- Proof of a Conjecture on Finite Modular Lattices.- Distributivity in Lattices.- Aspects of distributivity.- The Role of Gluing Constructions in Modular Lattice Theory.- Dilworth’s Covering Theorem for Modular Lattices.- Geometric and Semimodular Lattices.- Dependence Relations in a Semi-Modular Lattice.- A Counterexample to the Generalization of Sperner’s Theorem.- Dilworth’s Completion, Submodular Functions, and Combinatorial Optimization.- Dilworth Truncations of Geometric Lattices.- The Sperner Property in Geometric and Partition Lattices.- Multiplicative Lattices.- Abstract Residuation over Lattices.- Residuated Lattices.-Non-Commutative Residuated Lattices.- Non-Commutative Arithmetic.- Abstract Commutative Ideal Theory.- Dilworth’s Early Papers on Residuated and Multiplicative Lattices.- Abstract Ideal Theory: Principals and Particulars.- Representation and Embedding Theorems for Noether Lattices and r-Lattices.- Miscellaneous Papers.- The Structure of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- A Generalized Cantor Theorem.- Generators of lattice varieties.- Lattice Congruences and Dilworth’s Decomposition of Relatively Complemented Lattices.- The Normal Completion of the Lattice of Continuous Functions.- Cantor Theorems for Relations.- Ideal and Filter Constructions in Lattice Varieties.- Two Results from “Algebraic Theory of Lattices”.- Dilworth’s Proof of the Embedding Theorem.- On the Congruence Lattice of a Lattice.