Selected Papers of Norman Levinson: Contemporary Mathematicians
Editat de J.A. Nohel, D.H. Sattinger, Gian-Carlo Rotaen Limba Engleză Hardback – 18 dec 1997
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1236.82 lei 6-8 săpt. | |
Birkhäuser Boston – 19 oct 2011 | 1236.82 lei 6-8 săpt. | |
Hardback (1) | 1244.59 lei 6-8 săpt. | |
Birkhäuser Boston – 18 dec 1997 | 1244.59 lei 6-8 săpt. |
Din seria Contemporary Mathematicians
- 15% Preț: 686.04 lei
- 18% Preț: 1111.22 lei
- 18% Preț: 1847.84 lei
- 15% Preț: 660.18 lei
- Preț: 434.72 lei
- 18% Preț: 1408.89 lei
- 18% Preț: 1260.20 lei
- Preț: 405.06 lei
- 18% Preț: 1821.77 lei
- 18% Preț: 2118.87 lei
- 15% Preț: 677.02 lei
- 15% Preț: 669.66 lei
- 15% Preț: 651.19 lei
- 15% Preț: 606.69 lei
- 18% Preț: 1244.59 lei
- Preț: 401.79 lei
- Preț: 403.91 lei
- 18% Preț: 992.96 lei
- 18% Preț: 984.13 lei
- 15% Preț: 669.85 lei
- 18% Preț: 1841.20 lei
- 15% Preț: 607.01 lei
- 18% Preț: 978.46 lei
- Preț: 412.57 lei
- Preț: 447.99 lei
- 15% Preț: 681.92 lei
- Preț: 406.25 lei
- 18% Preț: 3033.85 lei
Preț: 1244.59 lei
Preț vechi: 1517.79 lei
-18% Nou
Puncte Express: 1867
Preț estimativ în valută:
238.18€ • 245.72$ • 201.59£
238.18€ • 245.72$ • 201.59£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817638627
ISBN-10: 0817638628
Pagini: 1085
Ilustrații: LXIII, 1085 p. In 2 volumes, not available separately.
Dimensiuni: 178 x 254 x 32 mm
Greutate: 1.22 kg
Ediția:1996
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
ISBN-10: 0817638628
Pagini: 1085
Ilustrații: LXIII, 1085 p. In 2 volumes, not available separately.
Dimensiuni: 178 x 254 x 32 mm
Greutate: 1.22 kg
Ediția:1996
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Contemporary Mathematicians
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
— Volume 1.- I. Stability and Asymptotic Behavior of Solutions of Ordinary Differential Equations.- Commentary on [L 31] and [L 36].- [L 20] The Growth of the Solutions of a Differential Equation (1941).- [L 24] The Growth of the Solutions of a Differential Equation (1942).- [L 31] The Asymptotic Behavior of a System of Linear Differential Equations (1946).- [L 36] The Asymptotic Nature of Solutions of Linear Systems of Differential Equations (1948).- [L 40] On Stability of Non-Linear Systems of Differential Equations (1949).- [L 68] On u? + (1 + ? g(x)) u = 0 for ?0? | g(x)|dx < ? (1959).- II. Nonlinear Oscillations and Dynamical Systems.- Commentary on [L 29], [L 38] and [L 47].- [L 23] A General Equation for Relaxation Oscillations (1942).- [L 25] On the Existence of Periodic Solutions for Second Order Differential Equations with a Forcing Term (1943).- [L 29] Transformation Theory of Non-Linear Differential Equations of the Second Order (1944) and Correction (1948).- [L 38] A Second Order Differential Equation with Singular Solutions (1949).- [L 47] Small Periodic Perturbations of an Autonomous System with a Stable Orbit (1950).- [L 52] Forced Periodic Solutions of a Stable Non-Linear System of Differential Equations (1951).- [L 57] On the Non-Uniqueness of Periodic Solutions for an Asymmetric Lienard Equation (1952).- III. Inverse Problems for Sturm-Liouville and Schrödinger Operators.- Commentary on [L 41], [L 43] and [L 58].- [L 41] On the Uniqueness of the Potential in a Schrödinger Equation for a Given Asymptotic Phase (1949).- [L 42] Determination of the Potential from the Asymptotic Phase (1949).- [L 43] The Inverse Sturm-Liouville Problem (1949).- [L 58] Certain Explicit Relationships between Phase Shift and Scattering Potential (1953).- IV.Eigenfunction Expansions and Spectral Theory for Ordinary Differential Equations.- Commentary on [L 49], [L 51], and [L 59].- [L 39] Criteria for the Limit-Point Case for Second Order Linear Differential Operators (1949).- [L 49] A Simplified Proof of the Expansions Theorem for Singular Second Order Linear Differential Equations (1951).- [L 50] Addendum to “A Simplified Proof of the Expansions Theorem for Singular Second Order Linear Differential Equations” (1951).- [L 51] On the Nature of the Spectrum of Singular Second Order Linear Differential Equations (1951).- [L 53] The L-Closure of Eigenfunctions Associated with Selfadjoint Boundary Value Problems (1952).- [L 59] The Expansion Theorem for Singular Self-Adjoint Linear Differential Operators (1954).- [L 65] Transform and Inverse Transform Expansions for Singular Self-Adjoint Differential Operators (1958).- V. Singular Perturbations of Ordinary and Partial Differential Equations.- Commentary on [L 45], [L 48], [L 60], [L 62], [L 63], [L 67], [L 56] and [L 46].- [L 45] Perturbations of Discontinuous Solutions of Non-Linear Systems of Differential Equations (1950).- [L 48] An Ordinary Differential Equation with an Interval of Stability, a Separation Point, and an Interval of Instability (1950).- [L 60] Singular Perturbations of Non-Linear Systems of Differential Equations and an Associated Boundary Layer Equation (1954).- [L 62] Periodic Solutions of Singularly Perturbed Systems (1955).- [L 56] A Boundary Value Problem for a Nonlinear Differential Equation with a Small Parameter (1952).- [L 63] A Boundary Value Problem for a Singularly Perturbed Differential Equation (1955).- [L 67] A Boundary Value Problem for a Singularly Perturbed Differential Equation (1958).- [L 46] The First Boundary Value Problem for ??u+A(x,y)ux + B(x,y)uy + C(x, y)u = D(x,y) for small ? (1950).- VI. Elliptic Partial Differential Equations.- Commentary on [L 75], [L 78], [L87].- [L 75] Positive Eigenfunctions for ?u + ?f(u) = 0 (1962).- [L 78] Dirichlet Problem for ?u = f(P, u) (1963).- [L 87] One-Sided Inequalities for Elliptic Differential Operators (1965).- VII. Integral Equations.- Commentary on [L 73].- [L 32] On the Asymptotic Shape of the Cavity Behind an Axially Symmetric Nose Moving Through an Ideal Fluid (1946).- [L 73] A Nonlinear Volterra Equation Arising in the Theory of Superfluidity (1960).- [L 89] Simplified Treatment of Integrals of Cauchy Type, the Hilbert Problem and Singular Integral Equations. Appendix: Poincar é-Bertrand Formula (1965).