Hausdorff Approximations: Mathematics and its Applications, cartea 50
Autor Bl. Sendov Editat de Gerald Beeren Limba Engleză Hardback – 31 oct 1990
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 393.35 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 27 sep 2011 | 393.35 lei 6-8 săpt. | |
Hardback (1) | 400.85 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 1990 | 400.85 lei 6-8 săpt. |
Din seria Mathematics and its Applications
- Preț: 483.29 lei
- Preț: 367.83 lei
- Preț: 381.89 lei
- Preț: 435.17 lei
- 23% Preț: 321.52 lei
- 20% Preț: 371.26 lei
- Preț: 432.50 lei
- 22% Preț: 321.53 lei
- Preț: 435.39 lei
- 15% Preț: 459.13 lei
- Preț: 427.71 lei
- 12% Preț: 351.91 lei
- 22% Preț: 333.11 lei
- Preț: 356.63 lei
- 18% Preț: 1125.42 lei
- Preț: 392.97 lei
- 15% Preț: 651.67 lei
- 15% Preț: 642.83 lei
- 15% Preț: 647.59 lei
- 15% Preț: 647.59 lei
- Preț: 389.49 lei
- Preț: 394.12 lei
- 15% Preț: 652.17 lei
- 20% Preț: 651.57 lei
- 15% Preț: 650.19 lei
- Preț: 382.36 lei
- Preț: 392.97 lei
- 15% Preț: 657.39 lei
- 15% Preț: 658.37 lei
- Preț: 394.29 lei
Preț: 400.85 lei
Nou
Puncte Express: 601
Preț estimativ în valută:
76.71€ • 80.19$ • 64.82£
76.71€ • 80.19$ • 64.82£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792309017
ISBN-10: 0792309014
Pagini: 388
Ilustrații: 388 p.
Greutate: 0.72 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792309014
Pagini: 388
Ilustrații: 388 p.
Greutate: 0.72 kg
Ediția:1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Elements of segment analysis.- § 1.1. Segment arithmetic.- § 1.2. Segment sequences.- § 1.3. Segment functions.- 2 Hausdorff distance.- § 2.1. Hausdorff distance between subsets of a metric space.- § 2.2. The metric space F?.- § 2.3. H-distancein A? and its properties.- § 2.4. Relationships between uniform distance and the Hausdorff distance.- § 2.5. The modulus of H-continuity.- § 2.6. The order of the modulus of H-continuity.- § 2.7. H-continuity on a subset.- § 2.8. H-distance with weight.- 3 Linear methods of approximation.- § 3.1. Convergence of sequences of positive operators.- § 3.2. The order of approximation of functions by positive linear operators.- § 3.3. Approximation of periodic functions by positive integral operators.- § 3.4. Approximation of functions by positive integral operators on a finite closed interval.- § 3.5. Approximation of functions by summation formulas on a finite closed interval.- § 3.6. Approximation of nonperiodic functions by integral operators on the entire real axis.- § 3.7. Convergence of derivatives of linear operators.- § 3.8. A-distance.- § 3.9. Approximation by partial sums of Fourier series.- 4 Best Hausdorff approximations.- § 4.1. Best approximation by algebraic and trigonometric polynomials.- § 4.2. Best approximation by rational functions.- § 4.3. Best approximation by spline functions.- § 4.4. Best approximation by piecewise monotone functions.- 5 Converse theorems.- § 5.1. Existence of a function with preassigned best approximations.- § 5.2. Converse theorems for the approximation by algebraic and trigonometric polynomials.- § 5.3. Converse theorems for approximation by spline functions.- § 5.4. Converse theorems for approximation by rational and partially monotone functions.- § 5.5.Converse theorems for approximation by positive linear operators.- 6 ?-Entropy, ?-capacity and widths.- § 6.1. ?-entropy and ?-capacity of the set F?M.- § 6.2. The number of (p,q)-corridors.- § 6.3. Labyrinths.- § 6.4. ?-entropy and ?-capacity of bounded sets of connected compact sets.- § 6.5. Widths.- 7 Approximation of curves and compact sets in the plane.- § 7.1. Approximation by polynomial curves.- § 7.2. Characterization of best approximation in terms of metric dimension.- § 7.3. Approximation by piecewise monotone curves.- § 7.4. Other methods for the approximation of curves in the plane.- 8 Numerical methods of best Hausdorff approximation.- § 8.1. One-sided Hausdorff distance.- § 8.2. Coincidence of polynomials of best approximation with respect to one- and two-sided Hausdorff distance.- § 8.3. Numerical methods for calculating the polynomial of best one-sided approximation.- References.- Author Index.- Notation Index.