Head and Neck Tumor Segmentation and Outcome Prediction: Third Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings: Lecture Notes in Computer Science, cartea 13626
Editat de Vincent Andrearczyk, Valentin Oreiller, Mathieu Hatt, Adrien Depeursingeen Limba Engleză Paperback – 19 mar 2023
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 416.63 lei 6-8 săpt. | |
Springer Nature Switzerland – 19 mar 2023 | 416.63 lei 6-8 săpt. | |
Springer International Publishing – 13 mar 2022 | 505.30 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 416.63 lei
Preț vechi: 520.79 lei
-20% Nou
Puncte Express: 625
Preț estimativ în valută:
79.74€ • 83.02$ • 67.39£
79.74€ • 83.02$ • 67.39£
Carte tipărită la comandă
Livrare economică 11-25 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031274190
ISBN-10: 3031274199
Pagini: 257
Ilustrații: XI, 257 p. 75 illus., 67 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.39 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031274199
Pagini: 257
Ilustrații: XI, 257 p. 75 illus., 67 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.39 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT 1.- Automated head and neck tumor segmentation from 3D PET/CT
HECKTOR 2022 challenge report.- A Coarse-to-Fine Ensembling Framework for Head and Neck Tumor
and Lymph Segmentation in CT and PET Images.- A General Web-based Platform for Automatic Delineation of Head and Neck Gross Tumor Volumes in PET/CT Images.- Octree Boundary Transfiner: Effcient Transformers for Tumor Segmentation Refinement.- Head and Neck Primary Tumor and Lymph Node Auto-Segmentation
for PET/CT Scans.- Fusion-based Automated Segmentation in Head and Neck Cancer via Advance Deep Learning Techniques.- Stacking Feature Maps of Multi-Scaled Medical Images in U-Net for 3D
Head and Neck Tumor Segmentation.- A fine-tuned 3D U-net for primary tumor and affected lymph nodes
segmentationin fused multimodal images of oropharyngeal cancer.- A U-Net convolutional neural network with multiclass Dice loss for automated segmentation of tumors and lymph nodes from head and neck cancer PET/CT images.- Multi-Scale Fusion Methodologies for Head and Neck Tumor Segmentation.- Swin UNETR for tumor and lymph node delineation of multicentre oropharyngeal cancer patients with PET/CT imaging.- Simplicity is All You Need: Out-of-the-Box nnUNet followed by Binary-Weighted Radiomic Model for Segmentation and Outcome Prediction in Head and Neck PET/CT.- Radiomics-enhanced Deep Multi-task Learning for Outcome Prediction in Head and Neck Cancer.- Recurrence-free Survival Prediction under the Guidance of Automatic Gross Tumor Volume Segmentation for Head and Neck Cancers.- Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of Head and Neck Cancers with PET/CT images.- LC at HECKTOR 2022: The Effect and Importance of Training Data when Analyzing Cases of Head and Neck Tumors using Machine Learning.- Towards Tumour Graph Learning for Survival Prediction in Head Neck
Cancer Patients.- Combining nnUNet and AutoML for Automatic Head and Neck Tumor Segmentation and Recurrence-Free Survival Prediction in PET/CT Images.- Head and neck cancer localization with Retina Unet for automated segmentation and time-to-event prognosis from PET/CT images.- HNT-AI: An Automatic Segmentation Framework for Head and Neck Primary Tumors and Lymph Nodes in FDG-PET/CT images.-
Head and Neck Tumor Segmentation with 3D UNet and Survival Prediction with Multiple Instance Neural Network.- Deep Learning and Machine Learning Techniques for Automated PET/CT Segmentation and Survival Prediction in Head and Neck Cancer.- Deep learning and radiomics based PET/CT image feature extraction
from auto segmented tumor volumes for recurrence-free survival prediction in oropharyngeal cancer patients.