Cantitate/Preț
Produs

Highlights in Lie Algebraic Methods: Progress in Mathematics, cartea 295

Editat de Anthony Joseph, Anna Melnikov, Ivan Penkov
en Limba Engleză Hardback – 19 oct 2011
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Citește tot Restrânge

Din seria Progress in Mathematics

Preț: 64399 lei

Preț vechi: 75763 lei
-15% Nou

Puncte Express: 966

Preț estimativ în valută:
12324 12789$ 10301£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817682736
ISBN-10: 0817682732
Pagini: 227
Ilustrații: XV, 227 p. 4 illus.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.52 kg
Ediția:2012
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Preface.- Part I: The Courses.- 1 Spherical Varieties.- 2 Consequences of the Littelmann Path Model for the Structure of the Kashiwara B(∞) Crystal.- 3 Structure and Representation Theory of Kac–Moody Superalgebras.- 4 Categories of Harish–Chandra Modules.- 5 Generalized Harish–Chandra Modules.- Part II: The Papers.- 6 B-Orbits of 2-Nilpotent Matrices.- 7 The Weyl Denominator Identity for Finite-Dimensional Lie Superalgebras.- 8 Hopf Algebras and Frobenius Algebras in Finite Tensor Categories.- 9 Mutation Classes of 3 x 3 Generalized Cartan Matrices.- 10 Contractions and Polynomial Lie Algebras.

Textul de pe ultima copertă

An outgrowth of a two-week summer session at Jacobs University in Bremen, Germany in August 2009 ("Structures in Lie Theory, Crystals, Derived Functors, Harish–Chandra Modules, Invariants and Quivers"), this volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras. 
List of Contributors: 
M. Boos
M. Brion
J. Fuchs
M. Gorelik
A. Joseph
M. Reineke
C. Schweigert
V. Serganova
A. Seven
W. Soergel
B. Wilson
G. Zuckerman

Caracteristici

Consists of invited contributions highlighting recent developments in Lie algebraic methods Self-contained volume Written by leading experts in their respective fields Includes supplementary material: sn.pub/extras