Cantitate/Preț
Produs

Hilbert Modular Forms

Autor Eberhard Freitag
en Limba Engleză Hardback – 10 mai 1990
Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38340 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 9 dec 2010 38340 lei  6-8 săpt.
Hardback (1) 39101 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 10 mai 1990 39101 lei  6-8 săpt.

Preț: 39101 lei

Nou

Puncte Express: 587

Preț estimativ în valută:
7489 7715$ 6273£

Carte tipărită la comandă

Livrare economică 22 februarie-08 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540505860
ISBN-10: 3540505865
Pagini: 268
Ilustrații: VIII, 252 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Hilbert Modular Forms.- II. Dimension Formulae.- III. The Cohomology of the Hilbert Modular Group.- Appendices.- I. Algebraic Numbers.- II. Integration.- III. Alternating Differential Forms.