Cantitate/Preț
Produs

Hilbert Modular Forms

Autor Eberhard Freitag
en Limba Engleză Paperback – 9 dec 2010
Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38622 lei  43-57 zile
  Springer Berlin, Heidelberg – 9 dec 2010 38622 lei  43-57 zile
Hardback (1) 39390 lei  43-57 zile
  Springer Berlin, Heidelberg – 10 mai 1990 39390 lei  43-57 zile

Preț: 38622 lei

Nou

Puncte Express: 579

Preț estimativ în valută:
7392 7618$ 6241£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642080722
ISBN-10: 3642080723
Pagini: 260
Ilustrații: VIII, 252 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Hilbert Modular Forms.- II. Dimension Formulae.- III. The Cohomology of the Hilbert Modular Group.- Appendices.- I. Algebraic Numbers.- II. Integration.- III. Alternating Differential Forms.