Cantitate/Preț
Produs

Homological Algebra: Encyclopaedia of Mathematical Sciences, cartea 38

Autor S.I. Gelfand Editat de A.I. Kostrikin Autor Yu I. Manin Editat de I.R. Shafarevich
en Limba Engleză Hardback – 29 mar 1994
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61984 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 20 mai 1999 61984 lei  6-8 săpt.
Hardback (1) 62523 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 29 mar 1994 62523 lei  6-8 săpt.

Din seria Encyclopaedia of Mathematical Sciences

Preț: 62523 lei

Preț vechi: 73557 lei
-15% Nou

Puncte Express: 938

Preț estimativ în valută:
11965 12584$ 9997£

Carte tipărită la comandă

Livrare economică 08-22 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540533733
ISBN-10: 3540533737
Pagini: 240
Ilustrații: V, 222 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.51 kg
Ediția:1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Encyclopaedia of Mathematical Sciences

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Complexes and Cohomology.- 2. The Language of Categories.- 3. Homology Groups in Algebra and in Geometry.- 4. Derived Categories and Derived Functors.- 5. Triangulated Categories.- 6. Mixed Hodge Structures.- 7. Perverse Sheaves.- 8. D-Modules.- References.- Author Index.

Caracteristici

Homological algebra is an important tool in algebraic geometry and algebraic topology The book presents a modern approach to this subject taking into account applications in both these fields Includes supplementary material: sn.pub/extras