Hypergeometric Orthogonal Polynomials and Their q-Analogues: Springer Monographs in Mathematics
Autor Roelof Koekoek Cuvânt înainte de Tom H. Koornwinder Autor Peter A. Lesky, René F. Swarttouwen Limba Engleză Paperback – 28 iun 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 708.05 lei 38-44 zile | |
Springer Berlin, Heidelberg – 28 iun 2012 | 708.05 lei 38-44 zile | |
Hardback (1) | 884.61 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 30 mai 2010 | 884.61 lei 6-8 săpt. |
Din seria Springer Monographs in Mathematics
- Preț: 252.65 lei
- 18% Preț: 753.20 lei
- 24% Preț: 775.58 lei
- 20% Preț: 695.97 lei
- 18% Preț: 942.10 lei
- 20% Preț: 574.68 lei
- 20% Preț: 818.27 lei
- 18% Preț: 849.15 lei
- 24% Preț: 740.00 lei
- 24% Preț: 1598.55 lei
- Preț: 614.94 lei
- 18% Preț: 770.41 lei
- Preț: 385.12 lei
- 15% Preț: 632.24 lei
- 18% Preț: 1200.69 lei
- 15% Preț: 485.49 lei
- Preț: 380.47 lei
- 18% Preț: 1363.93 lei
- 18% Preț: 774.40 lei
- 18% Preț: 889.96 lei
- Preț: 385.71 lei
- 15% Preț: 638.43 lei
- 15% Preț: 454.43 lei
- 15% Preț: 629.50 lei
- Preț: 394.68 lei
- Preț: 378.78 lei
- 15% Preț: 630.93 lei
- 15% Preț: 564.52 lei
- 15% Preț: 625.05 lei
- 15% Preț: 629.18 lei
- 18% Preț: 876.63 lei
- 15% Preț: 634.61 lei
- 18% Preț: 875.99 lei
- 18% Preț: 881.23 lei
- 18% Preț: 867.89 lei
- 15% Preț: 640.64 lei
- 18% Preț: 779.29 lei
- 15% Preț: 642.39 lei
- 15% Preț: 628.11 lei
- Preț: 373.55 lei
- 15% Preț: 684.18 lei
- 18% Preț: 1212.34 lei
- Preț: 397.48 lei
- 18% Preț: 1001.57 lei
- 18% Preț: 957.71 lei
- 15% Preț: 622.04 lei
- 15% Preț: 624.92 lei
- Preț: 377.66 lei
- 18% Preț: 937.64 lei
- 15% Preț: 630.30 lei
Preț: 708.05 lei
Preț vechi: 931.64 lei
-24% Nou
Puncte Express: 1062
Preț estimativ în valută:
135.50€ • 142.10$ • 112.99£
135.50€ • 142.10$ • 112.99£
Carte tipărită la comandă
Livrare economică 03-09 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642263514
ISBN-10: 3642263518
Pagini: 600
Ilustrații: XIX, 578 p. 2 illus.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.83 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642263518
Pagini: 600
Ilustrații: XIX, 578 p. 2 illus.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.83 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Definitions and Miscellaneous Formulas.- Classical orthogonal polynomials.- Orthogonal Polynomial Solutions of Differential Equations.- Orthogonal Polynomial Solutions of Real Difference Equations.- Orthogonal Polynomial Solutions of Complex Difference Equations.- Orthogonal Polynomial Solutions in x(x+u) of Real Difference Equations.- Orthogonal Polynomial Solutions in z(z+u) of Complex Difference Equations.- Hypergeometric Orthogonal Polynomials.- Polynomial Solutions of Eigenvalue Problems.- Classical q-orthogonal polynomials.- Orthogonal Polynomial Solutions of q-Difference Equations.- Orthogonal Polynomial Solutions in q?x of q-Difference Equations.- Orthogonal Polynomial Solutions in q?x+uqx of Real
Recenzii
From the reviews:
“The book starts with a brief but valuable foreword by Tom Koornwinder on the history of the classification problem for orthogonal polynomials. … the ideal text for a graduate course devoted to the classification, and it is a valuable reference, which everyone who works in orthogonal polynomials will want to own.” (Warren Johnson, The Mathematical Association of America, August, 2010)
“The book starts with a brief but valuable foreword by Tom Koornwinder on the history of the classification problem for orthogonal polynomials. … the ideal text for a graduate course devoted to the classification, and it is a valuable reference, which everyone who works in orthogonal polynomials will want to own.” (Warren Johnson, The Mathematical Association of America, August, 2010)
Textul de pe ultima copertă
The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function.
Replacing the differential equation by a second-order difference equation results in (discrete) orthogonal polynomial solutions with similar properties. Generalizations of these difference equations, in terms of Hahn's q-difference operator, lead to both continuous and discrete orthogonal polynomials with similar properties. For instance, they can be expressed in terms of (basic) hypergeometric functions.
Based on Favard's theorem, the authors first classify all families of orthogonal polynomials satisfying a second-order differential or difference equation with polynomial coefficients. Together with the concept of duality this leads to the families of hypergeometric orthogonal polynomials belonging to the Askey scheme. For each family they list the most important properties and they indicate the (limit) relations.
Furthermore the authors classify all q-orthogonal polynomials satisfying a second-order q-difference equation based on Hahn's q-operator. Together with the concept of duality this leads to the families of basic hypergeometric orthogonal polynomials which can be arranged in a q-analogue of the Askey scheme. Again, for each family they list the most important properties, the (limit) relations between the various families and the limit relations (for q --> 1) to the classical hypergeometric orthogonal polynomials belonging to the Askey scheme.
These (basic) hypergeometric orthogonal polynomials have several applications in various areas of mathematics and (quantum) physics such as approximation theory, asymptotics, birth and death processes, probability and statistics, coding theory and combinatorics.
Replacing the differential equation by a second-order difference equation results in (discrete) orthogonal polynomial solutions with similar properties. Generalizations of these difference equations, in terms of Hahn's q-difference operator, lead to both continuous and discrete orthogonal polynomials with similar properties. For instance, they can be expressed in terms of (basic) hypergeometric functions.
Based on Favard's theorem, the authors first classify all families of orthogonal polynomials satisfying a second-order differential or difference equation with polynomial coefficients. Together with the concept of duality this leads to the families of hypergeometric orthogonal polynomials belonging to the Askey scheme. For each family they list the most important properties and they indicate the (limit) relations.
Furthermore the authors classify all q-orthogonal polynomials satisfying a second-order q-difference equation based on Hahn's q-operator. Together with the concept of duality this leads to the families of basic hypergeometric orthogonal polynomials which can be arranged in a q-analogue of the Askey scheme. Again, for each family they list the most important properties, the (limit) relations between the various families and the limit relations (for q --> 1) to the classical hypergeometric orthogonal polynomials belonging to the Askey scheme.
These (basic) hypergeometric orthogonal polynomials have several applications in various areas of mathematics and (quantum) physics such as approximation theory, asymptotics, birth and death processes, probability and statistics, coding theory and combinatorics.
Caracteristici
Includes supplementary material: sn.pub/extras