Inductive Logic Programming: 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers: Lecture Notes in Computer Science, cartea 4894
Editat de Hendrik Blockeel, Jan Ramon, Jude Shavlik, Prasad Tadepallien Limba Engleză Paperback – 14 mar 2008
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 335.36 lei
Preț vechi: 419.20 lei
-20% Nou
Puncte Express: 503
Preț estimativ în valută:
64.18€ • 66.44$ • 54.25£
64.18€ • 66.44$ • 54.25£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540784685
ISBN-10: 3540784683
Pagini: 328
Ilustrații: XI, 307 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.5 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540784683
Pagini: 328
Ilustrații: XI, 307 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.5 kg
Ediția:2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Talks.- Learning with Kernels and Logical Representations.- Beyond Prediction: Directions for Probabilistic and Relational Learning.- Extended Abstracts.- Learning Probabilistic Logic Models from Probabilistic Examples (Extended Abstract).- Learning Directed Probabilistic Logical Models Using Ordering-Search.- Learning to Assign Degrees of Belief in Relational Domains.- Bias/Variance Analysis for Relational Domains.- Full Papers.- Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases.- Clustering Relational Data Based on Randomized Propositionalization.- Structural Statistical Software Testing with Active Learning in a Graph.- Learning Declarative Bias.- ILP :- Just Trie It.- Learning Relational Options for Inductive Transfer in Relational Reinforcement Learning.- Empirical Comparison of “Hard” and “Soft” Label Propagation for Relational Classification.- A Phase Transition-Based Perspective on Multiple Instance Kernels.- Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates.- Applying Inductive Logic Programming to Process Mining.- A Refinement Operator Based Learning Algorithm for the Description Logic.- Foundations of Refinement Operators for Description Logics.- A Relational Hierarchical Model for Decision-Theoretic Assistance.- Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming.- Revising First-Order Logic Theories from Examples Through Stochastic Local Search.- Using ILP to Construct Features for Information Extraction from Semi-structured Text.- Mode-Directed Inverse Entailment for Full Clausal Theories.- Mining of Frequent Block Preserving Outerplanar Graph Structured Patterns.- Relational Macros for Transfer in Reinforcement Learning.- Seeing theForest Through the Trees.- Building Relational World Models for Reinforcement Learning.- An Inductive Learning System for XML Documents.