Information Processing in Medical Imaging: 28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18–23, 2023, Proceedings: Lecture Notes in Computer Science, cartea 13939
Editat de Alejandro Frangi, Marleen de Bruijne, Demian Wassermann, Nassir Navaben Limba Engleză Paperback – 8 iun 2023
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 730.26 lei
Preț vechi: 912.83 lei
-20% Nou
Puncte Express: 1095
Preț estimativ în valută:
139.80€ • 145.87$ • 117.19£
139.80€ • 145.87$ • 117.19£
Carte tipărită la comandă
Livrare economică 12-26 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031340475
ISBN-10: 3031340477
Ilustrații: XXI, 839 p. 256 illus., 240 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.18 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031340477
Ilustrații: XXI, 839 p. 256 illus., 240 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.18 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Biomarkers Resolving quantitative MRI model degeneracy with machine learning via training data distribution design.- Subtype and stage inference with timescales.- Brain connectomics HoloBrain: A Harmonic Holography for Self-organized Brain Function.- Species-Shared and -Specific Brain Functional Connectomes Revealed by Shared-Unique Variational Autoencoder.- mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds.- Computer-Aided Diagnosis/Surgery Diffusion Model based Semi-supervised Learning on Brain Hemorrhage Images for Efficient Midline Shift Quantification.- Don’t PANIC: Prototypical Additive Neural Network for Interpretable Classification of Alzheimer’s Disease.- Filtered trajectory recovery: a continuous extension to event-based model for Alzheimer’s disease progression modeling.- Live image-based neurosurgical guidance and roadmap generation using unsupervised embedding.- Meta-information-aware Dual-path Transformer for Differential Diagnosis of Multi-type Pancreatic Lesions in Multi-phase CT.- MetaViT: Metabolism-Aware Vision Transformer for Differential Diagnosis of Parkinsonism with 18F-FDG PET.- Multi-task Multi-instance Learning for Jointly Diagnosis and Prognosis of Early-stage Breast Invasive Carcinoma from Whole-slide Pathological Images.- On Fairness of Medical Image Classification with Multiple Sensitive Attributes via Learning Orthogonal Representations.- Pixel-level explanation of multiple instance learning models in biomedical single cell images.- Marr Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model.- Weakly Semi-Supervised Detection in Lung Ultrasound Videos.- Optimization Differentiable Gamma Index-based loss functions: accelerating Monte-Carlo radiotherapy dose simulation.- Diversified stochastic orthonormal projective non-negative matrix factorization for big neuroimaging data.- Reconstruction Deep Physics-informed Super-resolution of Cardiac 4D-flow MRI.- Fast-MC-PET: A Novel Deep Learning-aid Motion Correction and Reconstruction Framework for Accelerated PET.- MeshDeform: Surface Reconstruction of Subcortical Structures via Human Brain MRI.- Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging.