Cantitate/Preț
Produs

Introducing Molecular Electronics: Lecture Notes in Physics, cartea 680

Editat de Gianaurelio Cuniberti, Giorgos Fagas, Klaus Richter
en Limba Engleză Hardback – 5 dec 2005
Klaus von Klitzing Max-Planck-Institut fur ¨ Festk¨ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 39544 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 22 oct 2010 39544 lei  6-8 săpt.
Hardback (1) 40245 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 5 dec 2005 40245 lei  6-8 săpt.

Din seria Lecture Notes in Physics

Preț: 40245 lei

Nou

Puncte Express: 604

Preț estimativ în valută:
7706 8024$ 6393£

Carte tipărită la comandă

Livrare economică 12-26 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540279945
ISBN-10: 3540279946
Pagini: 536
Ilustrații: XIX, 517 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.92 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Theory.- Foundations of Molecular Electronics – Charge Transport in Molecular Conduction Junctions.- AC-Driven Transport Through Molecular Wires.- Electronic Structure Calculations for Nanomolecular Systems.- Ab-initio Non-Equilibrium Green’s Function Formalism for Calculating Electron Transport in Molecular Devices.- Tight-Binding DFT for Molecular Electronics (gDFTB).- Current-Induced Effects in Nanoscale Conductors.- Single Electron Tunneling in Small Molecules.- Transport through Intrinsic Quantum Dots in Interacting Carbon Nanotubes.- Introducing Molecular Electronics: A Brief Overview.- Introducing Molecular Electronics: A Brief Overview.- Experiment.- Contacting Individual Molecules Using Mechanically Controllable Break Junctions.- Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers.- Making Contacts to Single Molecules: Are We There Yet?.- Six Unimolecular Rectifiers and What Lies Ahead.- Quantum Transport in Carbon Nanotubes.- Carbon Nanotube Electronics and Optoelectronics.- Charge Transport in DNA-based Devices.- Outlook.- CMOL: Devices, Circuits, and Architectures.- Architectures and Simulations for Nanoprocessor Systems Integrated on the Molecular Scale.

Textul de pe ultima copertă

This volume presents a summary of our current understanding of molecular electronics combined with selected state-of-the-art results at a level accessible to the advanced undergraduate or novice postgraduate. This single book comprises the basic knowledge of both theory and experiment underpinning this rapidly growing field. Concepts and techniques such as density functional theory and charge transport, break junctions and scanning probe microscopy are introduced step-by-step and are subsequently used in specific examples. The text addresses a wide range of systems including molecular junctions made of single-molecules, self-assembled monolayers, carbon nanotubes and DNA.

Caracteristici

Features basic knowledge of both theory and experiment Includes supplementary material: sn.pub/extras