Introduction to Arakelov Theory
Autor Serge Langen Limba Engleză Hardback – 9 noi 1988
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 681.43 lei 6-8 săpt. | |
Springer – 30 sep 2012 | 681.43 lei 6-8 săpt. | |
Hardback (1) | 706.81 lei 6-8 săpt. | |
Springer – 9 noi 1988 | 706.81 lei 6-8 săpt. |
Preț: 706.81 lei
Preț vechi: 831.54 lei
-15% Nou
Puncte Express: 1060
Preț estimativ în valută:
135.31€ • 139.16$ • 112.25£
135.31€ • 139.16$ • 112.25£
Carte tipărită la comandă
Livrare economică 18 februarie-04 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387967936
ISBN-10: 0387967931
Pagini: 187
Ilustrații: X, 187 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 1.03 kg
Ediția:1988
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387967931
Pagini: 187
Ilustrații: X, 187 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 1.03 kg
Ediția:1988
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Metrics and Chern Forms.- §1. Néron Functions and Divisors.- §2. Metrics on Line Sheaves.- §3. The Chern Form of a Metric.- §4. Chern Forms in the Case of Riemann Surfaces.- II Green’s Functions on Rlemann Surface.- §1. Green’s Functions.- §2. The Canonical Green’s Function.- §3. Some Formulas About the Green’s Function.- §4. Coleman’s Proof for the Existence of Green’s Function.- §5. The Green’s Function on Elliptic Curves.- III Intersection on an Arithmetic Surface.- §1. The Chow Groups.- §2. Intersections.- §3. Fibral Intersections.- §4. Morphisms and Base Change.- §5. Néron Symbols.- IV Hodge Index Theorem and the Adjunction Formula.- §1. Arakelov Divisors and Intersections.- §2. The Hodge Index Theorem.- §3. Metrized Line Sheaves and Intersections.- §4. The Canonical Sheaf and the Residue Theorem.- §5. Metrizations and Arakelov’s Adjunction Formula.- V The Faltings Reimann-Roch Theorem.- §1. Riemann-Roch on an Arithmetic Curve.- §2. Volume Exact Sequences.- §3. Faltings Riemann-Roch.- §4. An Application of Riemann-Roch.- §5. Semistability.- §6. Positivity of the Canonical Sheaf.- VI Faltings Volumes on Cohomology.- §1. Determinants.- §2. Determinant of Cohomology.- §3. Existence of the Faltings Volumes.- §4. Estimates for the Faltings Volumes.- §5. A Lower Bound for Green’s Functions.- Appendix by Paul Vojta Diophantine Inequalities and Arakelov Theory.- §1. General Introductory Notions.- §2. Theorems over Function Fields.- §3. Conjectures over Number Fields.- §4. Another Height Inequality.- §5. Applications.- References.- Frequently Used Symbols.