Introduction to Optimal Control Theory
Autor Jack Macki, Aaron Straussen Limba Engleză Hardback – 4 dec 1981
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 361.79 lei 6-8 săpt. | |
Springer – 20 oct 2011 | 361.79 lei 6-8 săpt. | |
Hardback (1) | 447.03 lei 6-8 săpt. | |
Springer – 4 dec 1981 | 447.03 lei 6-8 săpt. |
Preț: 447.03 lei
Preț vechi: 525.91 lei
-15% Nou
Puncte Express: 671
Preț estimativ în valută:
85.58€ • 92.93$ • 71.97£
85.58€ • 92.93$ • 71.97£
Carte tipărită la comandă
Livrare economică 14-28 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387906249
ISBN-10: 038790624X
Pagini: 168
Ilustrații: XIV, 168 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.44 kg
Ediția:1982
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 038790624X
Pagini: 168
Ilustrații: XIV, 168 p.
Dimensiuni: 156 x 234 x 13 mm
Greutate: 0.44 kg
Ediția:1982
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
I Introduction and Motivation.- 1 Basic Concepts.- 2 Mathematical Formulation of the Control Problem.- 3 Controllability.- 4 Optimal Control.- 5 The Rocket Car.- Exercises.- Notes.- II Controllability.- 1 Introduction: Some Simple General Results.- 2 The Linear Case.- 3 Controllability for Nonlinear Autonomous Systems.- 4 Special Controls.- Exercises.- Appendix: Proof of the Bang-Bang Principle.- III Linear Autonomous Time-Optimal Control Problems.- 1 Introduction: Summary of Results.- 2 The Existence of a Time-Optimal Control; Extremal Controls; the Bang-Bang Principle.- 3 Normality and the Uniqueness of the Optimal Control.- 4 Applications.- 5 The Converse of the Maximum Principle.- 6 Extensions to More General Problems.- Exercises.- IV Existence Theorems for Optimal Control Problems.- 1 Introduction.- 2 Three Discouraging Examples. An Outline of the Basic Approach to Existence Proofs.- 3 Existence for Special Control Classes.- 4 Existence Theorems under Convexity Assumptions.- 5 Existence for Systems Linear in the State.- 6 Applications.- Exercises.- Notes.- V Necessary Conditions for Optimal Controls—The Pontryagin Maximum Principle.- 1 Introduction.- 2 The Pontryagin Maximum Principle for Autonomous Systems.- 3 Applying the Maximum Principle.- 4 A Dynamic Programming Approach to the Proof of the Maximum Principle.- 5 The PMP for More Complicated Problems.- Exercises.- Appendix to Chapter V—A Proof of the Pontryagin Maximum Principle.- Mathematical Appendix.