Cantitate/Preț
Produs

Invariant Methods in Discrete and Computational Geometry: Proceedings of the Curaçao Conference, 13–17 June, 1994

Editat de Neil L. White
en Limba Engleză Paperback – dec 2010
Invariant, or coordinate-free methods provide a natural framework for many geometric questions. Invariant Methods in Discrete and Computational Geometry provides a basic introduction to several aspects of invariant theory, including the supersymmetric algebra, the Grassmann-Cayler algebra, and Chow forms. It also presents a number of current research papers on invariant theory and its applications to problems in geometry, such as automated theorem proving and computer vision.
Audience: Researchers studying mathematics, computers and robotics.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63701 lei  6-8 săpt.
  SPRINGER NETHERLANDS – dec 2010 63701 lei  6-8 săpt.
Hardback (1) 64334 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 iul 1995 64334 lei  6-8 săpt.

Preț: 63701 lei

Preț vechi: 79627 lei
-20% Nou

Puncte Express: 956

Preț estimativ în valută:
12195 12676$ 10111£

Carte tipărită la comandă

Livrare economică 08-22 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789048145720
ISBN-10: 9048145724
Pagini: 344
Ilustrații: XIV, 328 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of hardcover 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

The Power of Positive Thinking.- to Chow Forms.- Capelli’s Method of Variability Ausiliarie, Superalgebras, and Geometric Calculus.- Letterplace Algebra and Symmetric Functions.- A Tutorial on Grassmann-Cayley Algebra.- Computational Symbolic Geometry.- Invariant Theory and the Projective Plane.- Automatic Proving of Geometric Theorems.- The Resolving Bracket.- Computation of the Invariants of a Point Set in P3 P3 from Its Projections in P2 P2.- Geometric Algebra and Möbius Sphere Geometry as a Basis for Euclidean Invariant Theory.- Invariants on G/U × G/U × G/U, G = SL(4,C).- On A Certain Complex Related to the Notion of Hyperdeterminant.- On Cayley’s Projective Configurations — An Algorithmic Study.- On the Contruction of Equifacetted 3-Speres.- Depths and Betti Numbers of Homology Manifolds.