Inverse problems in vibration: Mechanics: Dynamical Systems, cartea 9
Autor G. M. L. Gladwellen Limba Engleză Paperback – iun 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 387.20 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – iun 2012 | 387.20 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 28 oct 2010 | 953.03 lei 6-8 săpt. | |
Hardback (1) | 959.19 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 10 aug 2004 | 959.19 lei 6-8 săpt. |
Preț: 387.20 lei
Nou
Puncte Express: 581
Preț estimativ în valută:
74.11€ • 76.37$ • 62.57£
74.11€ • 76.37$ • 62.57£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401511803
ISBN-10: 9401511802
Pagini: 280
Ilustrații: 284 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mechanics: Dynamical Systems
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401511802
Pagini: 280
Ilustrații: 284 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mechanics: Dynamical Systems
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 — Elementary Matrix Analysis.- 1.1 Introduction.- 1.2 Basic definitions and notations.- 1.3 Matrix inversion and determinants.- 1.4 Eigenvalues and eigenvectors.- 2 — Vibration of Discrete Systems.- 2.1 Introduction.- 2.2 Vibration of some simple systems.- 2.3 Transverse vibration of a beam.- 2.4 Generalized coordinates and Lagrange’s equations.- 2.5 Natural frequencies and normal modes.- 2.6 Principal coordinates and receptances.- 2.7 Rayleigh’s Principle.- 2.8 Vibration under constraint.- 2.9 Iterative and independent definitions of eigenvalues.- 3 — Jacobian Matrices.- 3.1 Sturm sequences.- 3.2 Orthogonal polynomials.- 3.3 Eigenvectors of Jacobian matrices.- 4 — Inversion of Discrete Second-Order Systems.- 4.1 Introduction.- 4.2 An inverse problem for a Jacobian matrix.- 4.3 Variants of the inverse problem for a Jacobian matrix.- 4.4 Inverse eigenvalue problems for spring-mass system.- 5 — Further Properties of Matrices.- 5.1 Introduction.- 5.2 Minors.- 5.3 Further properties of symmetric matrices.- 5.4 Perron’s theorem and associated matrices.- 5.5 Oscillatory matrices.- 5.6 Oscillatory systems of vectors.- 5.7 Eigenvalues of oscillatory matrices.- 5.8 u-Line analysis.- 6 — Some Applications of the Theory of Oscillatory Matrices.- 6.1 The inverse mode problem for a Jacobian matrix.- 6.2 The inverse problem for a single mode of a spring-mass system.- 6.3 The reconstruction of a spring-mass system from two modes.- 6.4 A note on the matrices appearing in a finite element model of a rod.- 7 — The Inverse Problem for the Discrete Vibrating Beam.- 7.1 Introduction.- 7.2 The eigenanalysis of the clamped-free beam.- 7.3 The forced response of the beam.- 7.4 The spectra of the beam.- 7.5 Conditions of the data.- 7.6 Inversion by using orthogonality.-7.7 The block-Lanczos algorithm.- 7.8 A numerical procedure for the beam inverse problem.- 8 — Green’s Functions and Integral Equations.- 8.1 Introduction.- 8.2 Sturm-Liouville systems.- 8.3 Green’s functions.- 8.4 Symmetric kernels and their eigenvalues.- 8.5 Oscillatory properties of Sturm-Liouville kernels.- 8.6 Completeness.- 8.7 Nodes and zeros.- 8.8 Oscillatory systems of functions.- 8.9 Perron’s theorem and associated kernels.- 8.10 The interlacing of eigenvalues.- 8.11 Asymptotic behaviour of eigenvalues and eigenfunctions.- 8.12 Impulse responses.- 9 — Inversion of Continuous Second-Order Systems.- 9.1 Introduction.- 9.2 A historical overview.- 9.3 The reconstruction procedure.- 9.4 The Gel’fand-Levitan integral equation.- 9.5 Reconstruction of the differential equation.- 9.6 The inverse problem for the vibrating rod.- 9.7 Reconstruction from the impulse response.- 10 — The Euler-Bernoulli Beam.- 10.1 Introduction.- 10.2 Oscillatory properties of Euler-BernouUi kernels.- 10.3 The eigenfunctions of the cantilever beam.- 10.4 The spectra of the beam.- 10.5 Statement of the inverse problem.- 10.6 The reconstruction procedure.- 10.7 The positivity of matrix P is sufficient.- 10.8 Determination of feasible data.
Recenzii
`This book is a necessary addition to the library of engineers and mathematicians working in vibration theory.'
Mathematical Reviews
Mathematical Reviews