Kontinuumstheorie der Versetzungen und Eigenspannungen: Ergebnisse der angewandten Mathematik, cartea 5
Autor Ekkehart Krönerde Limba Germană Paperback – 1958
Din seria Ergebnisse der angewandten Mathematik
- Preț: 444.66 lei
- Preț: 405.22 lei
- 15% Preț: 428.46 lei
- Preț: 404.85 lei
- Preț: 379.18 lei
- Preț: 375.05 lei
- Preț: 379.75 lei
Preț: 342.95 lei
Nou
Puncte Express: 514
Preț estimativ în valută:
65.65€ • 67.52$ • 54.47£
65.65€ • 67.52$ • 54.47£
Carte tipărită la comandă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540022619
ISBN-10: 3540022619
Pagini: 188
Ilustrații: VIII, 180 S.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der angewandten Mathematik
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540022619
Pagini: 188
Ilustrații: VIII, 180 S.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der angewandten Mathematik
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Abschnitt. Versetzungen im Kontinuum: Geometrie.- § 1. Versetzung und Volterrasche D.- § 2. Plastische und elastische Distorsion.- § 3. Die geometrische Grundgleichung der Kontinuumsmechanik des Festkörpers.- § 4. Versetzungswanderung und plastische Distorsion.- § 5. Die invarianten Bestandteile der Distorsionsfelder.- § 6. Der geometrische Ursprung der Temperaturspannungen, der magnetischen Spannungen und der Konzentrationsspannungen.- § 7. Die spannungsfreien Strukturkrümmungen.- § 8. Die Grenzflächenbedingungen für die Distorsionen.- § 9. Die Grenzflächenbedingungen für die Deformationen, flächenhafte Inkompatibilitätsverteilungen.- § 10. Einiges über große Distorsionen.- § 11. Bestimmung der Distorsionen eines Körpers mit Versetzungen.- II. Abschnitt. Versetzungen im Kontinuum: Statik.- § 12. Der Spannungsfunktionstensor.- § 13. Lösung des Summationsproblems bei Eigenspannungen.- § 14. Die elastische Energie und das Variationsproblem des Mediums mit Eigenspannungen.- § 15. Die bei Eigenspannungen auftretenden Randwertprobleme und ihre Behandlung mit Spannungsfunktionen.- § 16. Erweiterung auf elastische Anisotropie, Doppelkräfte.- § 17. Die elastizitätstheoretische Behandlung der singulären Versetzung.- § 18. Die elastische Energie der singulären Versetzung.- § 19. Die Kräfte auf Versetzungen und andere elastische Singularitäten. Die Versetzung als elementare Eigenspannungs-quelle.- III. Abschnitt. Versetzungen im Kristall.- § 20. Allgemeines.- § 21. Die geometrische Grundgleichung im Kristall: Die mikroskopische Theorie.- § 22. Die geometrische Grundgleichung im Kristall: Übergang zur makroskopischen Theorie.- § 23. Ebene Versetzungsanordnungen im Kristall.- § 24. Die Versetzungstypen des kubisch flächenzentriertenKristalls.- § 25. Die nicht-lineare Behandlung der singulären Versetzung nach Peierls.- IV. Abschnitt. Nicht-Riemannsche Geometrie der Versetzungen.- § 26. Die Theorie von Kondo und Mitarbeitern.- § 27. Die Theorie von Bilby, Bullough und Smith.- § 28. Diskussion.- V. Abschnitt. Anwendungen.- § 29. Die Verfestigung der kubisch flächen zentrierten Metalle.- § 30. Eine Näherungsmethode zur Berechnung der Selbstenergie singulärer Versetzungen.- § 31. Fremdatome als elastische Dipole und Polarisationszentren.- § 32. Anwendungen des Spannungsfunktionstensors ?? auf rotationssymmetrische und dreidimensionale Probleme.- Anhang. Die Zerlegung der Tensorfelder 2. Stufe.